Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 090402    DOI: 10.1088/0256-307X/31/9/090402
GENERAL |
The Motion of Spinning Particles in the Spacetime of a Black Hole with a Cosmic String Topological Defect
LAI Chu-Yu, CHEN Ju-Hua, WANG Yong-Jiu**
1College of Physics and Information Science, Hunan Normal University, Changsha 410081
Cite this article:   
LAI Chu-Yu, CHEN Ju-Hua, WANG Yong-Jiu 2014 Chin. Phys. Lett. 31 090402
Download: PDF(458KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The geodesic motion of pseudo-classical spinning particles in the spacetime of a black hole with the topological defect of a cosmic string, is analyzed. The constants of motion are derived in terms of solving the generalized killing equations for spinning space. The bound state orbits in a plane are discussed. Our results are permitted to be regarded as a semiclassical approximation to the quantum Dirac theory which holds to first order in the spin. The existence of the cosmic string factor b distinguishes the case from the one in Schwarzschild spacetime. When one chooses b=1, our results reduce to the case of the Schwarzschild spacetime.
Published: 22 August 2014
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/090402       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/090402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LAI Chu-Yu
CHEN Ju-Hua
WANG Yong-Jiu
[1] Casalbuoni R 1976 Phys. Lett. B 62 49
[2] Brink L, Deser S, Zumino B, P Di Vecchia and P Howe 1976 Phys. Lett. B 64 435
[3] Riatdijk R H and van Holten J W 1990 Class. Quantum Grav. 7 247
[4] van Holten J W and Rietdijk R H 1993 J. Geom. Phys. 11 559
[5] Rietdijk R H and van Holten J W 1993 Class. Quantum Grav. 10 575
[6] Gibbons G W, Rietdijk R H and van Holten J W 1993 Nucl. Phys. B 404 42
[7] Barducci A, Casalbuoni R and Lusanna L 1977 Nucl. Phys. B 124 93
[8] Barducci A, Bondi F and Casalbuoni R 1981 Nuovo Cimento B 64 287
[9] van Holten J W 1990 Proc. Sem. Math. Structures in Field Theories (1986–1987)
[10] Khriplovish I B Novosibirsk preprint INR-89-1
[11] van Holten J W 1991 Nucl. Phys. B 356 3
[12] van Holten J W 1992 Physica A 182 279
[13] Frenkel J 1926 Z. Phys. 37 243
[14] Ali M H 2003 Gen. Relativ. Gravit. 35 285
[15] Rietdijk R H 1994 Theor. Math. Phys. 98 317
[16] Ali M H 2002 Int. J. Theor. Phys. 41 2319
[17] Banu A 2012 J. Korean Phys. Soc. 60 690
[18] Chen J H and Wang Y J 2010 Int. J. Mod. Phys. A 25 1439
[19] Chen J H and Wang Y J 2011 Phys. Lett. B 705 124
[20] Banu A and Ansary M A 2009 Int. J. Theor. Phys. 48 2987
[21] Baleanu D 1998 Gen. Relativ. Gravit. 30 195
[22] Banu A 2012 Gen. Relativ. Gravit. 44 2239
[23] Vilenkin A 1987 Gravitational Interactions of Cosmic Strings (Combridge: Combridge University Press)
[24] Aryal M, Ford L H and Vilenkin A 1986 Phys. Rev. D 34 2263
Related articles from Frontiers Journals
[1] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 090402
[2] Chi-Kun Ding. Gravitational Perturbations in Einstein Aether Black Hole Spacetime[J]. Chin. Phys. Lett., 2018, 35(10): 090402
[3] Chang-Qing Liu, Chi-Kun Ding, Ji-Liang Jing. Effects of Homogeneous Plasma on Strong Gravitational Lensing of Kerr Black Holes[J]. Chin. Phys. Lett., 2017, 34(9): 090402
[4] Mahamat Saleh, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Energy and Thermodynamics of the Quantum-Corrected Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 090402
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 090402
[6] M. Azam, A. Aslam. Accretion onto the Magnetically Charged Regular Black Hole[J]. Chin. Phys. Lett., 2017, 34(7): 090402
[7] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 090402
[8] Jun-Jin Peng, Wen-Chang Xiang, Shao-Hong Cai. Abbott–Deser–Tekin Charge of Dilaton Black Holes with Squashed Horizons[J]. Chin. Phys. Lett., 2016, 33(08): 090402
[9] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 090402
[10] MA Meng-Sen, ZHAO Ren. Notes on Phase Transition of Nonsingular Black Hole[J]. Chin. Phys. Lett., 2015, 32(03): 090402
[11] ZHANG Ming, YUE Rui-Hong, YANG Zhan-Ying. Critical Behavior of Black Holes in an Einstein–Maxwell Gravity with a Conformal Anomaly[J]. Chin. Phys. Lett., 2015, 32(02): 090402
[12] HE Tang-Mei, YANG Jin-Bo, ZHANG Jing-Yi. Corrected Stefan–Boltzmann Law and Lifespan of a Black Hole[J]. Chin. Phys. Lett., 2014, 31(08): 090402
[13] Ahmad Sheykhi. Quasi-Topological Cosmology from Emergence of Cosmic Space[J]. Chin. Phys. Lett., 2014, 31(2): 090402
[14] FANG Heng-Zhong, ZHOU Kai-Hu. Emission of Phonons from a Rotating Sonic Black Hole[J]. Chin. Phys. Lett., 2014, 31(1): 090402
[15] G. Abbas, R. M. Ramzan. Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein–Power–Maxwell Gravity[J]. Chin. Phys. Lett., 2013, 30(10): 090402
Viewed
Full text


Abstract