CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Influence of Rapid Thermal Annealing on the Structure and Electrical Properties of Ce-Doped HfO2 Gate Dielectric |
MENG Yong-Qiang, LIU Zheng-Tang, FENG Li-Ping**, CHEN Shuai |
State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072
|
|
Cite this article: |
MENG Yong-Qiang, LIU Zheng-Tang, FENG Li-Ping et al 2014 Chin. Phys. Lett. 31 077702 |
|
|
Abstract Ce-doped HfO2 (HfCeO) films are prepared by radio-frequency magnetron sputtering. The influences of rapid thermal annealing on the structure and electrical properties of HfCeO films are investigated. The results show that the incorporation of Ce into HfO2 increases the crystallization temperature of HfO2, and the cubic phase of HfO2 can be stabilized by incorporating Ce into HfO2. After high temperature annealing, Hf 4f core level spectra shift to a higher energy, whereas O 1s core level spectra shift to a lower energy. With increasing annealing temperatures, the effective permittivity increases, whereas the flat-band voltage shift and effective oxide charge density decrease. Moreover, the leakage current density of the HfCeO films decreases initially, and then increases as the annealing temperature increases.
|
|
Published: 30 June 2014
|
|
|
|
|
|
[1] He G, Zhu L, Sun Z, Wan Q and Zhang L 2011 Prog. Mater. Sci. 56 475 [2] Sudheendran K and James Raju K C 2011 J. Mater. Sci.: Mater. Electron. 22 626 [3] He G, Chen X and Sun Z 2013 Surf. Sci. Rep. 68 68 [4] Ji M, Wang L, Xiong Y H and Du J 2010 J. Rare Earths 28 396 [5] Fu C H, Chang-Liao K S, Chang Y A, Hsu Y Y, Tzeng T H, Wang T K, Heh D W, Gu P Y and Tsai M J 2011 Microelectron. Eng. 88 1309 [6] Feng L P and Liu Z T 2009 Appl. Phys. Lett. 94 252907 [7] He G, Liu M, Zhu L Q, Chang M, Fang Q and Zhang L 2005 Surf. Sci. 576 67 [8] Liu Q Y, Fang Z B, Ji T, Liu S Y, Tan Y S, Chen J J and Zhu Y Y 2014 Chin. Phys. Lett. 31 027702 [9] Liu J S, Geng Y, Chen L, Sun Q Q, Zhou P, Lu H L and Zhang D W 2013 Thin Solid Films 529 230 [10] Chatterjee S, Kuo Y, Lu J, Tewg J Y and Majhi P 2006 Microelectron. Reliab. 46 69 [11] Liu W T, Liu Z T, Yan F and Tan T T 2010 Physica B 405 1108 [12] Choi J H, Mao Y and Chang J P 2011 Mater. Sci. Eng. R 72 97 [13] Karakaya K, Barcones B, Rittersma Z M, van Berkum J G M, Verheijen M A, Rijnders G and Blank D H A 2006 Mater. Sci. Semiconductor Process. 9 1061 [14] Xiong Y H, Tu H L, Du J, Zhang X Q, Chen D P and Wang W W 2011 Appl. Phys. Lett. 98 082906 [15] Singh V, Sharma S K, Kumar D and Nahar R K 2012 Microelectron. Eng. 91 137 [16] Ji F, Xu J P, Zhang H Q, Li P T, Li C X and Guan J G 2008 Res. Prog. Solid-State Electron. 28 330 [17] Yang M M, Tu H L, Du J, Wei F, Xiong Y H and Zhao H B 2013 J. Rare Earths 31 395 [18] Feng L P, Liu Z T and Shen Y M 2009 Vacuum 83 902 [19] Qiu L M, Liu F, Zhao L Z, Ma Y and Yao J N 2006 Appl. Surf. Sci. 252 4931 [20] Zhu H Y 1993 J. Mater. Sci. Lett. 12 749 [21] Zha G Q, Tang S Q and Tan T T 2013 Rare Met. Mater. Eng. 42 1576 [22] Lyons J L, Janotti A and Van de Walleet C G 2011 Microelectron. Eng. 88 1452 [23] Tan T T, Liu Z T, Lu H C, Liu W T and Yan F 2009 Vacuum 83 1155 [24] Chen S, Liu Z T, Feng L P and Che X S 2013 Appl. Phys. Lett. 103 132902 [25] Ho M Y et al 2002 Appl. Phys. Lett. 81 4218 [26] Chen H W, Chiu F C, Liu C H, Chen S Y, Huang H S, Juan P C and Hwang H L 2008 Appl. Surf. Sci. 254 6112 [27] Bersuker G et al 2011 Solid-State Electron. 65 146 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|