Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 077703    DOI: 10.1088/0256-307X/31/7/077703
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Depolarization and Electrical Response of Porous PZT 95/5 Ferroelectric Ceramics under Shock Wave Compression
WANG Zhi-Zhu1, JIANG Yi-Xuan1, ZHANG Pan1, WANG Xing-Zhe1**, HE Hong-Liang2
1Key Laboratory of Mechanics on Disaster and Environment in Western China (Ministry of Education), College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000
2National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900
Cite this article:   
WANG Zhi-Zhu, JIANG Yi-Xuan, ZHANG Pan et al  2014 Chin. Phys. Lett. 31 077703
Download: PDF(789KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The release of bound charges by shock wave loading of poled lead zirconate titanate (PZT 95/5) ferroelectric ceramics can result in a high-power electrical energy output. In this study, a theoretical formulation describing the depolarization and electrical response of porous PZT 95/5 ceramics in the normal mode to shock wave compression loading perpendicular to the polarization direction is developed. The depoling process in porous poled PZT 95/5 ceramics is analyzed by using a parallel circuit consisting of a current source, capacitance, conductance and a circuit load. This modeling takes the effects of porosity on wave velocity and remanent polarization and dielectric constant into account, and the effects of variations in dielectric constant and conductivity in the shocked region are assessed. The output current characteristics of porous PZT 95/5 ceramics under short-circuit and resistive load conditions are analyzed and compared with the experiment, with the results showing that theoretical predictions taking into consideration the porosity of ferroelectric ceramics are in close agreement with the experimentally measured electrical response of porous PZT 95/5 under shock wave compression loading.
Published: 30 June 2014
PACS:  77.22.Ej (Polarization and depolarization)  
  77.55.hj (PZT)  
  77.84.Cg (PZT ceramics and other titanates)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/077703       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/077703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Zhi-Zhu
JIANG Yi-Xuan
ZHANG Pan
WANG Xing-Zhe
HE Hong-Liang
[1] Tkach Y, Shkuratov S I, Talantsev E F, Dickens J C, Kristiansen M Altgilbers L L and Tracy P T 2002 IEEE Trans. Plasma Sci. 30 1665
[2] Lysne P C and Percival C M 1975 J. Appl. Phys. 46 1519
[3] Lysne P C 1977 J. Appl. Phys. 48 4565
[4] Mock W and Holt W H 1978 J. Appl. Phys. 49 5846
[5] Timmerhaus K D and Barber M S 1978 High Pressure Science and Technology (New York: Plenum Press) p 20
[6] Setchell R E 2002 Shock Compression of Condensed Matter-2001 (American Institute of Physics) p 19
[7] Du J M, Zhang Y, Zhang F P, He H L and Wang H Y 2006 Acta Phys. Sin. 55 2584 (in Chinese)
[8] Jiang D D, Du J M, Gu Y and Feng Y J 2012 J. Appl. Phys. 111 104102
[9] Jiang D D, Du J M, Gu Y and Feng Y J 2012 J. Phys. D: Appl. Phys. 45 115401
[10] Lan C H, Peng Y F, Long J D, Wang Q and Wang W D 2011 Chin. Phys. Lett. 28 088301
[11] Dungan R H and Storz L J 1985 J. Am. Ceram. Soc. 68 530
[12] Tuttle B A, Yang P, Gieske J H, Voigt J A, Scofield T W, Zeuch D H and Olson W L 2004 J. Am. Ceram. Soc. 84 1260
[13] Setchell R E 2003 J. Appl. Phys. 94 573
[14] Setchell R E 2005 J. Appl. Phys. 97 013507
[15] Setchell R E 2007 J. Appl. Phys. 101 053525
[16] Zeng T, Dong X, Mao C, Zhou Z and Yang H 2007 J. Eur. Ceram. Soc. 27 2025
[17] Nie H C, Dong X, Feng N, Chen X, Wang G, Gu Y, He H and Liu Y 2010 Mater. Res. Bull. 45 564
[18] Reynolds C E and Seay G E 1962 J. Appl. Phys. 33 2234
[19] Ramakrishnan N and Arunachalam V S 1990 J. Mater. Sci. 25 3930
[20] Anderson O L 1979 J. Geophys. Res. 84 3537
[21] Mock W and Holt W H 1980 Ferroelectrics 23 39
[22] Banno H 1987 Am. Ceram. Soc. Bull. 66 1332
[23] Feng N, Nie H, Chen X, Wang G, Dong X and He H 2010 Curr. Appl. Phys. 10 1387
[24] Feng N, Gu Y, Liu Y, Nie H, Chen X, Wang G, He H and Dong X 2010 Acta Phys. Sin. 59 8897
Related articles from Frontiers Journals
[1] Wei Zhang , Chao Wang , Jian-Wei Lian , Jun Jiang, and An-Quan Jiang. Erasable Ferroelectric Domain Wall Diodes[J]. Chin. Phys. Lett., 2021, 38(1): 077703
[2] Qiang-zhong Wang, Gang Wang, Fa-xin Li. Precise, Long-Time Displacement Self-Sensing of Piezoelectric Cantilever Actuators Based on Charge Measurement Using the Sawyer–Tower Circuit[J]. Chin. Phys. Lett., 2018, 35(10): 077703
[3] LIU Fei, SHAO Xiao-Peng, XIANGLI Bin, GAO Ying, HAN Ping-Li, WANG Lin. Effects of Finite Surface on Polarization State of Thermal Emission[J]. Chin. Phys. Lett., 2015, 32(11): 077703
[4] CHEN Gang-Jin, LEI Ming-Feng, XIAO Hui-Ming, WU Ling. Unique Charge Storage Characteristics of FEP/THV/FEP Sandwich Electret Membrane Polarized by Thermally Charging Technology[J]. Chin. Phys. Lett., 2014, 31(12): 077703
[5] LV Xin, WANG Nan, CHEN Xiang-Ming. Evolution from Diffuse Ferroelectric to Relaxor Ferroelectric in Pb1?xBax(Fe1/2Nb1/2)O3 Solid Solutions[J]. Chin. Phys. Lett., 2014, 31(07): 077703
[6] ZOU Ya-Yi, CHEW Khian-Hooi, ZHOU Yan. Dynamic Control of Tunneling Conductance in Ferroelectric Tunnel Junctions[J]. Chin. Phys. Lett., 2013, 30(10): 077703
[7] YAN Ren-Jie, WU Jing-Hua, LI Cong, XU Gao-Jie, ZHOU Lu-Wei. Temperature Effects of Electrorheological Fluids Based on One-Dimensional Calcium and Titanium Precipitate[J]. Chin. Phys. Lett., 2013, 30(1): 077703
[8] HU Liang, WANG Hai-Peng, LI Liu-Hui, WEI Bing-Bo. Electrostatic Levitation of Plant Seeds and Flower Buds[J]. Chin. Phys. Lett., 2012, 29(6): 077703
[9] GONG Yu-Fei,WU Ping,LIU Wei-Fang**,WANG Shou-Yu,LIU Guang-Yao,RAO Guang-Hui. Switchable Ferroelectric Diode Effect and Piezoelectric Properties of Bi0.9La0.1FeO3 Ceramics[J]. Chin. Phys. Lett., 2012, 29(4): 077703
[10] ZHAO Liang,SHEN Ming-Rong*,CAO Wen-Wu. Pyroelectric Study on Dipolar Alignment in 0.69Pb(Mg1/3Nb2/3)O3−0.31PbTiO3 Single Crystals[J]. Chin. Phys. Lett., 2012, 29(4): 077703
[11] LIU Xiao-Bing, MENG Jian-Wei, JIANG An-Quan**, WANG Jian-Lu . Thickening of Non-Ferroelectric Capacitive Layers with Enhanced Domain Switching Speed in Polyvinylidence Fluoride Copolymer Thin Films[J]. Chin. Phys. Lett., 2011, 28(10): 077703
[12] ZHANG Hong-Ling, WANG Gen-Shui, CHEN Xue-Feng, CAO Fei, DONG Xian-Lin**, GU Yan, HE Hong-Liang, LIU Yu-Sheng . Mechanism of the Pyroelectric Response under Direct-Current Bias in La-Modified Lead Zirconate Titanate Stannate Ceramics[J]. Chin. Phys. Lett., 2011, 28(9): 077703
[13] WANG Chun-Mei, DUAN Yi-Feng, CHEN Chang-Qing. First-Principles Study of Tetragonal BaTiO3 Subjected to Uniaxial Tensile Stress along the c Axis[J]. Chin. Phys. Lett., 2009, 26(1): 077703
[14] HAO Guo-Dong, CHEN Yong-Hai. Uniaxial Strain Effects on Optical Properties of c-plane Wurtzite GaN[J]. Chin. Phys. Lett., 2008, 25(11): 077703
[15] JIANG Yan-Ping, TANG Xin-Gui, LIU Qiu-Xiang, ZHOU Yi-Chun, CHAN-WONG Lai-Wa. Dielectric and Pyroelectric Properties of (Pb0.50Sr0.50)TiO3 Ceramics[J]. Chin. Phys. Lett., 2008, 25(8): 077703
Viewed
Full text


Abstract