Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 075202    DOI: 10.1088/0256-307X/31/7/075202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Quasi-Monoenergetic Electron Beam Generation from Nanothickness Solid Foils Irradiated by Circular-Polarization Laser Pulses
SU Heng-Yi1, HUANG Yong-Sheng1**, WANG Nai-Yan1, TANG Xiu-Zhang1, LU Wei2
1High Power Excimer Laser Laboratory, China Institute of Atomic Energy, Beijing 102413
2Department of Engineering Physics, Tsinghua University, Beijing 100084
Cite this article:   
SU Heng-Yi, HUANG Yong-Sheng, WANG Nai-Yan et al  2014 Chin. Phys. Lett. 31 075202
Download: PDF(1057KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ultrashort 1022–1024 W/cm2 laser pulses will offer the possibility of producing monoenergetic electron beams in the GeV–TeV level in the future. A laser-electron acceleration scheme is proposed by the interaction between a thin solid foil and an ultra-intense laser pulse for a0≥800σ0, where a0 is the normalized laser field and σ0 is the normalized plasma surface density. The energy of the electrons as a function of time can be described by a simple model which indicates that an exponential relationship exists between the energy and the normalized time τ. A quasi-monoenergetic high density electron beam with 1.3 GeV energy and a 2.2% energy spread has been predicted for a0=223.5 by particle-in-cell simulations. Characteristics of the ultra-high density electron layer formed in the early period of the acceleration are discussed.
Published: 30 June 2014
PACS:  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  41.75.Jv (Laser-driven acceleration?)  
  52.65.Rr (Particle-in-cell method)  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/075202       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/075202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Heng-Yi
HUANG Yong-Sheng
WANG Nai-Yan
TANG Xiu-Zhang
LU Wei
[1] DesRosiers C et al 2000 Phys. Med. Biol. 45 1781
[2] Glinec Y et al 2006 Med. Phys. 33 155
[3] Glinec Y et al 2005 Phys. Rev. Lett. 94 025003
[4] Leemans P W et al 2003 Phys. Rev. Lett. 91 074802
[5] Shen Y et al 2007 Phys. Rev. Lett. 99 043901
[6] Esarey E, Ride K S and Sprangle P 1993 Phys. Rev. E 48 3003
[7] Matlis H N et al 2006 Nat. Phys. 2 749
[8] Kitagawa Y et al 2004 Phys. Rev. Lett. 92 205002
[9] Lu W et al 2005 Phys. Plasmas 12 063101
[10] Lu W et al 2007 Phys. Rev. Spec. Top. Accel. Beams 10 061301
[11] Tochitsky S et al 2004 Phys. Rev. Lett. 92 095004
[12] Lindberg R R et al 2004 Phys. Rev. Lett. 93 055001
[13] Umstadter D et al 1995 Phys. Rev. E 51 3484
[14] Liu S J et al 2011 Phys. Rev. Lett. 107 035001
[15] Chambaret P J et al 2010 Extreme Light Infrastruct.: Laser Architecture Major Challenges Proc. SPIE 7721, Solid State Lasers and Amplifiers IV and High-Power Lasers 77211D (Brussels, Belgium 12 April 2010)
[16] Froula H D et al 2009 Phys. Rev. Lett. 103 215006
[17] Ralph E J et al 2010 Phys. Plasmas 17 056709
[18] Leemans P W et al 2006 Nat. Phys. 2 696
[19] Nakamura K et al 2007 Phys. Plasmas 14 056708
[20] Clayton E C et al 2010 Phys. Rev. Lett. 105 105003
[21] Schwoerer H et al 2006 Nature 439 445
[22] Esirkepov T Zh et al 2004 Phys. Rev. Lett. 92 175003
[23] Wang M W et al 2010 Phys. Rev. Spec. Top. Accel. Beams 13 071301
[24] Kulagin V V et al 2007 Phys. Rev. Lett. 99 124801
[25] Kulagin V V et al 2004 Phys. Plasmas 11 5239
[26] Wang X et al 2006 Phys. Plasmas 13 080702
[27] Chen L M et al 2008 Phys. Rev. Lett. 100 045004
[28] Mordovanakis G A et al 2009 Phys. Rev. Lett. 103 235001
[29] Wen M et al 2012 Appl. Phys. Lett. 101 021102
[30] Hemker G R 2000 PhD Dissertation (Los Angeles: University of California)
[31] Esirkepov T et al 2004 Phys. Rev. Lett. 92 175003
[32] Yan X Q et al 2008 Phys. Rev. Lett. 100 135003
[33] Landau D L and Lifshitz M E 1980 The Classical Theory of Fields (Oxford: Pergamon Press)
[34] Pauli W 1981 Theory of Relativity (New York: Dover)
Related articles from Frontiers Journals
[1] Shu-Kai He, Jin-Long Jiao, Zhi-Gang Deng, Feng Lu, Lei Yang, Fa-Qiang Zhang, Ke-Gong Dong, Wei Hong, Zhi-Meng Zhang, Bo Zhang, Jian Teng, Wei-Min Zhou, Yu-Qiu Gu. Generation of Ultrahigh-Velocity Collisionless Electrostatic Shocks Using an Ultra-Intense Laser Pulse Interacting with Foil-Gas Target[J]. Chin. Phys. Lett., 2019, 36(10): 075202
[2] Yi-Xing Geng, Qing-Liao, Yin-Ren Shou, Jun-Gao Zhu, Xiao-Han Xu, Min-Jian Wu, Peng-Jie Wang, Dong-Yu Li, Tong-Yang, Rong-Hao Hu, Da-Hui Wang, Yan-Ying Zhao, Wen Jun Ma, Hai-Yang Lu, Zhong-Xi Yuan, Chen-Lin, Xue-Qing Yan. Generating Proton Beams Exceeding 10MeV Using High Contrast 60TW Laser[J]. Chin. Phys. Lett., 2018, 35(9): 075202
[3] Yi-Ying Wu, Quan-Li Dong, Zhao-Hua Wang, Ping Liu, Cheng-Zhen Wang, Yi-Hui Zhang, Zheng-Ming Sheng, Jie Zhang. Electron Dynamics and Characteristics of Attosecond Electromagnetic Emissions in Relativistic Laser-Plasma Interactions[J]. Chin. Phys. Lett., 2018, 35(9): 075202
[4] Wei Song, Rong-Hao Hu, Yin-Ren Shou, Zheng Gong, Jin-Qing Yu, Chen Lin, Wen-Jun Ma, Yan-Yin Zhao, Hai-Yang Lu, Xue-Qing Yan. High-Yield High-Efficiency Positron Generation in High-$Z$ Metal Targets Irradiated by Laser Produced Electrons from Near-Critical Density Plasmas[J]. Chin. Phys. Lett., 2017, 34(8): 075202
[5] Jun Dong, Zhong-Gui Lu, Bo Zhang, Zhi-Tao Peng, Zhi-Hong Sun, Yan-Wen Xia, Hao-Yu Yuan, Jun Tang, De-Yan Zhu, Hua Liu, Jia-Kun Lv. Single-Shot Measurement of Transient Phase Shift Induced by Laser Wake[J]. Chin. Phys. Lett., 2017, 34(5): 075202
[6] Guo-Bo Zhang, N. A. M. Hafz, Yan-Yun Ma, Lie-Jia Qian, Fu-Qiu Shao, Zheng-Ming Sheng. Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses[J]. Chin. Phys. Lett., 2016, 33(09): 075202
[7] Shuan Zhao, Chen Lin, Jia-Er Chen, Wen-Jun Ma, Jun-Jie Wang, Xue-Qing Yan. Using Target Ablation for Ion Beam Quality Improvement[J]. Chin. Phys. Lett., 2016, 33(03): 075202
[8] WANG Wei-Quan, YIN Yan, ZOU De-Bin, YU Tong-Pu, YANG Xiao-Hu, XU Han, YU Ming-Yang, MA Yan-Yun, ZHUO Hong-Bin, SHAO Fu-Qiu. Simulation of the Quasi-Monoenergetic Protons Generation by Parallel Laser Pulses Interaction with Foils[J]. Chin. Phys. Lett., 2014, 31(11): 075202
[9] ZHANG Shao-Hua, YU Xi-Long, CHEN Li-Hong, ZHANG Xin-Yu. Laser Diagnostics of Combustion Enhancement on a CH4/Air Bunsen Flame by Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2013, 30(8): 075202
[10] HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, SHI Yi-Jin, ZHANG Shan. Double-Relativistic-Electron-Layer Proton Acceleration with High-Contrast Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2013, 30(2): 075202
[11] BAN Hong-Ye, GU Yan-Jun, KONG Qing, LI Ying-Ying, ZHU Zhen, S. Kawata. Quasi-monoenergetic Tens-of-MeV Proton Beams by a Laser-Illuminated Funnel-Like Target[J]. Chin. Phys. Lett., 2012, 29(3): 075202
[12] TENG Hao, MA Jing-Long, WANG Zhao-Hua, ZHENG Yi, GE Xu-Lei, ZHANG Wei, WEI Zhi-Yi**, LI Yu-Tong, ZHANG Jie,. A 100-TW Ti:Sapphire Laser System at a Repetition Rate of 0.1 Hz[J]. Chin. Phys. Lett., 2012, 29(1): 075202
[13] XU Miao-Hua**, LI Hong-Wei, LIU Bi-Cheng, LIU Feng, SU Lu-Ning, DU Fei, ZHANG Lu, ZHENG Yi, MA Jing-Long, David Neely, Paul McKenna, WANG Zhao-Hua, WEI Zhi-Yi, YAN Xue-Qing, LI Yu-Tong**, LI Ying-Jun, ZHANG Jie, . Development of a Real-Time Ion Spectrometer with a Scintillator for Laser-Driven Ion Acceleration Experiments[J]. Chin. Phys. Lett., 2011, 28(9): 075202
[14] XIA Chang-Quan**, DENG Ai-Hua, LIU Li, WANG Wen-Tao, LU Hai-Yang, WANG Cheng, LIU Jian-Sheng . Proton Acceleration with Double-Layer Targets in the Radiation Pressure Dominant Regime[J]. Chin. Phys. Lett., 2011, 28(8): 075202
[15] WU Tao, WANG Xin-Bing** . Lifetime Calculations on Collector Optics from Laser Plasma Extreme Ultraviolet Sources with Minimum Mass[J]. Chin. Phys. Lett., 2011, 28(5): 075202
Viewed
Full text


Abstract