Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 075201    DOI: 10.1088/0256-307X/31/7/075201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Influence of Forbidden Processes on Similarity Law in Argon Glow Discharge at Low Pressure
FU Yang-Yang, LUO Hai-Yun, ZOU Xiao-Bing, WANG Xin-Xin**
Department of Electrical Engineering, Tsinghua University, Beijing 100084
Cite this article:   
FU Yang-Yang, LUO Hai-Yun, ZOU Xiao-Bing et al  2014 Chin. Phys. Lett. 31 075201
Download: PDF(791KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The similarity law of gas discharge is not always valid due to the occurrence of some elementary processes, such as the stepwise ionization process, which are defined as the forbidden processes. To research the influence of forbidden processes on the similarity law, physical parameters (i.e., the electric field, electron density, electron temperature) in similar gaps are investigated based on the fluid model of gas discharge. The products of gas pressure p and dimensions are kept to be constant in similar gaps and the discharge model is solved with and without the forbidden processes, respectively. Discharges in similar gaps are identified as glow discharges and the typical similarity relations all are investigated. The results show that the forbidden processes cause significant deviations of similarity relations from the theoretical ones and the deviations are enlarged as the scaled-down factor k increases. If the forbidden processes are excluded from the model, the similarity law will be valid in argon glow discharge at low pressure.
Published: 30 June 2014
PACS:  52.80.Hc (Glow; corona)  
  52.65.-y (Plasma simulation)  
  51.50.+v (Electrical properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/075201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/075201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Yang-Yang
LUO Hai-Yun
ZOU Xiao-Bing
WANG Xin-Xin
[1] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) chap 4 p 53
[2] von Engel A and Alfred 1965 Ionized Gases (Oxford: Clarendon Press) Appendix p 288
[3] Osmokrovic P et al 2006 Plasma Sources Sci. Technol. 15 703
[4] Ouyang J, Callegari Th, Caillier B and Boeuf J P 2003 IEEE Trans. Plasma Sci. 31 422
[5] Dekic S, Osmokrovic P, Vujisic M et al 2010 IEEE Trans. Dielectr. Electr. Insulat. 17 1185
[6] Osmokrovic P, Vasic A and Zivic T 2005 IEEE Trans. Plasma Sci. 33 1677
[7] Mesyats G A 2006 JETP Lett. 83 19
[8] Mesyats G A 2006 Phys.-Usp. 49 1045
[9] Bogaerts A and Gijbels R 1999 J. Appl. Phys. 86 4124
[10] Staack D, Farouk B, Gutsol A and Fridman A 2008 Plasma Sources Sci. Technol. 17 025013
[11] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[12] Bashlov N L et al 1993 J. Phys. D: Appl. Phys. 26 410
[13] Fiala A, Pitchford L C and Boeuf J P 1994 Phys. Rev. E 49 5607
[14] Shon J W and Kushner M J 1994 J. Appl. Phys. 75 1883
[15] Brown S C 1967 Basic Data of Plasma Physics (New York: MIT Press) chap 14 p 280
[16] Franzke J 2009 Anal. Bioanal. Chem. 395 549
[17] Janasek D, Franzke J and Manz A 2006 Nature 442 374
Related articles from Frontiers Journals
[1] Wen-Zheng Liu, Shuai Zhao, Mao-Lin Chai, Jiang-Qi Niu. A Method of Using a Carbon Fiber Spiral-Contact Electrode to Achieve Atmospheric Pressure Glow Discharge in Air[J]. Chin. Phys. Lett., 2017, 34(8): 075201
[2] QIAN Mu-Yang, YANG Cong-Ying, CHEN Xiao-Chang, NI Geng-Song, LIU-Song, WANG De-Zhen. Modeling of the Distinctive Ground-State Atomic Oxygen Density Profile in Plasma Needle Discharge at Atmospheric Pressure[J]. Chin. Phys. Lett., 2015, 32(07): 075201
[3] Sharmin Sultana, Jichul Shin. Dynamic Characteristics of a Microhollow Cathode Sustained Discharge with Split Third Electrodes for Potential Flow Application to Flow Velocimetry[J]. Chin. Phys. Lett., 2014, 31(09): 075201
[4] YIN Peng-Fei, ZHANG Rong, LIU Qian, HU Jian-Chang, LI Yin-Bing, LI Ning. Preparation of Micropowder by a Combination of Jet-Milling and Electrostatic Dispersion[J]. Chin. Phys. Lett., 2013, 30(9): 075201
[5] DING Fang, ZHENG Shi-Jian, KE Bo, TANG Zhong-Liang, ZHANG Yi-Chuan, YANG Kuan, XIE Xin-Hua, ZHU Xiao-Dong. Self-Adjusting Characterization for Steady-State, Direct Current Cathode-Dominated Glow Discharge Plasmas at High Pressures[J]. Chin. Phys. Lett., 2013, 30(8): 075201
[6] YANG Chen-Guang, XU Yong-Yue, ZUO Du-Luo. Temperature Characteristics of Cathode Sheath in High-Pressure Volume Discharge Derived from Emanating Shock Wave[J]. Chin. Phys. Lett., 2012, 29(12): 075201
[7] LI Guo-Fu,**,YU Hai-Jun,DUO Li-Ping,JIN Yu-Qi,WANG Jian,SANG Feng-Ting,WANG De-Zhen. Pulsed Chemical Oxygen Iodine Lasers Excited by Pulse Gas Discharge with the Assistance of Surface Sliding Discharge Pre-ionization[J]. Chin. Phys. Lett., 2012, 29(5): 075201
[8] OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2012, 29(2): 075201
[9] LI Xue-Chen**, JIA Peng-Ying, ZHAO Na . Spatial-Temporal Patterns in a Dielectric Barrier Discharge under Narrow Boundary Conditions in Argon at Atmospheric Pressure[J]. Chin. Phys. Lett., 2011, 28(4): 075201
[10] LI Shang, OUYANG Ji-Ting, HE Feng. Transition of Discharge Mode of a Local Hollow Cathode Discharge[J]. Chin. Phys. Lett., 2010, 27(6): 075201
[11] QI Bing, HUANG Jian-Jun, ZHANG Zhe-Huang, WANG De-Zhen. Observation of Periodic Multiplication and Chaotic Phenomena in Atmospheric Cold Plasma Jets[J]. Chin. Phys. Lett., 2008, 25(9): 075201
[12] YU Qian, DENG Yong-Feng, LIU Yue, HAN Xian-Wei. Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure[J]. Chin. Phys. Lett., 2008, 25(7): 075201
[13] FENG Shuo, HE Feng, OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2007, 24(8): 075201
[14] LIU Xiu-Jun, CHEN Guang-Liang, CHEN Shi-Hua, QIAN Feng, FENG Ke-Cheng, YANG Si-Ze. Removal of NO Molecules by a Novel Atmospheric Pressure Plasma Apparatus[J]. Chin. Phys. Lett., 2006, 23(10): 075201
[15] D. AKBAR, S. BILIKMEN. Ambipolar Diffusion in Direct-Current Positive Column with Variations in Radius of Discharge Tube[J]. Chin. Phys. Lett., 2006, 23(9): 075201
Viewed
Full text


Abstract