Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 070501    DOI: 10.1088/0256-307X/31/7/070501
GENERAL |
Effects of Spike Frequency Adaptation on Synchronization Transitions in Electrically Coupled Neuronal Networks with Scale-Free Connectivity
WANG Lei, ZHANG Pu-Ming, LIANG Pei-Ji, QIU Yi-Hong**
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
WANG Lei, ZHANG Pu-Ming, LIANG Pei-Ji et al  2014 Chin. Phys. Lett. 31 070501
Download: PDF(1158KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Effects of spike frequency adaptation (SFA) on the synchronous behavior of population neurons are investigated in electrically coupled networks with a scale-free property. By a computational approach, we corroborate that pairwise correlations between neurons would decrease if neurons exhibit the feature of SFA, which is similar to previous experimental observations. However, unlike the case of pairwise correlations, population activities of neurons show a rather complex variation mode: compared with those of non-adapted neurons, neurons in the networks having weak-degrees of SFA will impair population synchronizations; while neurons exhibiting strong-degrees of SFA will enhance population synchronizations. Moreover, a variation of coupling strength between neurons will not alter this phenomenon significantly, unless the coupling strength is too weak. Our results suggest that synchronous activity of electrically coupled population neurons is adaptation-dependent, and this adaptive feature may imply some coding strategies of neuronal populations.
Published: 30 June 2014
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  87.19.lj (Neuronal network dynamics)  
  87.19.lm (Synchronization in the nervous system)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/070501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/070501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Lei
ZHANG Pu-Ming
LIANG Pei-Ji
QIU Yi-Hong
[1] Fries P et al 2001 Science 291 1560
[2] Chalk M et al 2010 Neuron 66 114
[3] Pesaran B et al 2002 Nat. Neurosci. 5 805
[4] Yu H T et al 2013 Chin. Phys. B 22 058701
[5] Wang H X et al 2010 Chin. Phys. B 19 060509
[6] Shi X and Lu Q S 2009 Physica A 388 2410
[7] Wang Q Y et al 2008 Physica A 387 4404
[8] Gu H G et al 2013 Physica A 392 3281
[9] Sun X J and Lu Q S 2009 Chin. Phys. Lett. 26 060507
[10] Sun X J and Lu Q S 2014 Chin. Phys. Lett. 31 020502
[11] Wang Q Y et al 2010 Physica A 389 3299
[12] Li Y Y et al 2009 Chin. Phys. Lett. 26 030504
[13] Sun Z Q et al 2010 Chin. Phys. Lett. 27 088702
[14] Pastor-Satorras R et al 2001 Phys. Rev. Lett. 87 258701
[15] Barabási A L and Oltvai Z N 2004 Nat. Rev. Genet. 5 101
[16] Lorenz W W et al 2011 BMC Genomics 12 264
[17] Ciuciu P et al 2012 Front. Physiol. 3 186
[18] Eguíluz V M et al 2005 Phys. Rev. Lett. 94 018102
[19] Barabási A L and Albert R 1999 Science 286 509
[20] Wang Q Y et al 2011 PLoS ONE 6 e15851
[21] Wang Q Y and Chen G R 2011 Chaos 21 013123
[22] Wang L et al 2012 Eur. Phys. J. B 85 14
[23] Wang Q Y et al 2009 Chaos 19 023112
[24] Crook S M et al 1998 Neural Comput. 10 837
[25] van Vreeswijk C and Hansel D 2001 Neural Comput. 13 959
[26] Li H et al 2012 PLoS ONE 7 e34336
[27] Izhikevich E M and Hoppensteadt F 2004 Int. J. Bifurcation Chaos Appl. Sci. Eng. 14 3847
[28] Liu Y H and Wang X J 2001 J. Comput. Neurosci. 10 25
[29] Gao Z et al 2001 Phys. Rev. E 65 016209
[30] Izhikevich E M 2004 IEEE Trans. Neural Netw. 15 1063
Related articles from Frontiers Journals
[1] Liang Zhang, Tian Tian, Pu Huang, Shaochun Lin, Jiangfeng Du. Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice[J]. Chin. Phys. Lett., 2020, 37(1): 070501
[2] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 070501
[3] Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai, Hai-Hong Li. The Ott–Antonsen Ansatz in Globally Coupled Phase Oscillators[J]. Chin. Phys. Lett., 2016, 33(07): 070501
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 070501
[5] Di Yuan, Dong-Qiu Zhao, Yi Xiao, Ying-Xin Zhang. Travelling Wave in the Generalized Kuramoto Model with Inertia[J]. Chin. Phys. Lett., 2016, 33(05): 070501
[6] ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng. Synchronization in the Uncoupled Neuron System[J]. Chin. Phys. Lett., 2015, 32(12): 070501
[7] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 070501
[8] SONG Xin-Fang, WANG Wen-Yuan. Target Inactivation and Recovery in Two-Layer Networks[J]. Chin. Phys. Lett., 2015, 32(11): 070501
[9] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 070501
[10] FENG Yue-E, LI Hai-Hong. The Dependence of Chimera States on Initial Conditions[J]. Chin. Phys. Lett., 2015, 32(06): 070501
[11] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 070501
[12] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 070501
[13] YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun, JIN Tao, QU Shi-Xian. Change of State of a Dynamical Unit in the Transition of Coherence[J]. Chin. Phys. Lett., 2015, 32(01): 070501
[14] G. Sivaganesh. An Analytical Study on the Synchronization of Murali–Lakshmanan–Chua Circuits[J]. Chin. Phys. Lett., 2015, 32(01): 070501
[15] ZOU Ying-Ying, LI Hai-Hong. Paths to Synchronization on Complex Networks with External Drive[J]. Chin. Phys. Lett., 2014, 31(10): 070501
Viewed
Full text


Abstract