Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 067304    DOI: 10.1088/0256-307X/31/6/067304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Surface States of Bi2Se3 Nanowires in the Presence of Perpendicular Magnetic Fields
SHI Li-Kun, LOU Wen-Kai**
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
SHI Li-Kun, LOU Wen-Kai 2014 Chin. Phys. Lett. 31 067304
Download: PDF(690KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the surface states of Bi2Se3 nanowires (NWs) in the presence of perpendicular magnetic fields. It is found that the minigap of Bi2Se3, arising from the quantized surface states around the circumference of NWs can be closed by perpendicular magnetic fields. With increasing magnetic fields, the Landau levels and edge states appear and localize at the center and edge of NWs, respectively. More interestingly, magnetic fields split the electron surface subbands with opposite tangential momenta, leading to specific edge states with low group velocity.
Published: 26 May 2014
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  75.75.-c (Magnetic properties of nanostructures)  
  73.21.Hb (Quantum wires)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/067304       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/067304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Li-Kun
LOU Wen-Kai
[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[2] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[3] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[4] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[5] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[6] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[7] Moore J E 2010 Nature 464 194
[8] Yang W, Chang K and Zhang S C 2008 Phys. Rev. Lett. 100 056602
[9] Zhang Z Z, Chang K and Peeters F M 2008 Phys. Rev. B 77 235411
Chang K and Lou W K 2011 Phys. Rev. Lett. 106 206802
[10] Zhang H J, Liu C X, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[11] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[12] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[13] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hansan M Z 2008 Nature 452 970
[14] Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009 Science 323 919
[15] Zhu J J, Yao D X, Zhang S C and Chang K 2011 Phys. Rev. Lett. 106 097201
[16] Miao M S, Yan Q, Van de Walle C G, Lou W K, Li L L and Chang K 2012 Phys. Rev. Lett. 109 186803
[17] Zhang D, Lou W K, Miao M S, Zhang S C and Chang K 2013 Phys. Rev. Lett. 111 156402
[18] Ferrari G and Cuoghi G 2008 Phys. Rev. Lett. 100 230403
[19] Ferrari G, Bertoni A, Goldoni G and Molinari E 2008 Phys. Rev. B 78 115326
[20] Bellucci S, Gonzlez J, Guinea F, Onorato P and Perfetto E 2007 J. Phys.: Condens. Matter 19 395017
[21] Perfetto E, Gonz' alez J, Guinea F, Bellucci S and Onorato P 2007 Phys. Rev. B 76 125430
[22] Peng H, Lai K, Kong D, Meister S, Chen Y, Qi X L, Zhang S C, Shen Z X and Cui Y 2010 Nat. Mater. 9 225
[23] Kong D, Randel J C, Peng H, Cha J J, Meister S, Lai K, Chen Y, Shen Z X, Manoharan H C and Cui Y 2010 Nano Lett. 10 329
[24] Hong S S, Kundhikanjana W, Cha J J, Lai K, Kong D, Meister S, Kelly M A, Shen Z X and Cui Y 2010 Nano Lett. 10 3118
[25] Cho S, Kim D, Syers P, Butch N P, Paglione J and Fuhrer M S 2012 Nano Lett. 12 469
[26] Cha J J, Williams J R, Kong D, Meister S, Peng H, Bestwick A J, Gallagher P, Goldhaber-Gordon D and Cui Y 2010 Nano Lett. 10 1076
[27] Bardarson J H, Brouwer P W and Moore J E 2010 Phys. Rev. Lett. 105 156803
[28] Zhang Y and Vishwanath A 2010 Phys. Rev. Lett. 105 206601
[29] Lou W K, Cheng F and Li J 2011 J. Appl. Phys. 110 093714
[30] Yin S L, Liang X J and Zhao H W 2013 Chin. Phys. Lett. 30 087305
[31] Zhang Y, Ran Y and Vishwanath A 2009 Phys. Rev. B 79 245331
[32] Imura K I, Takane Y and Tanaka A 2011 Phys. Rev. B 84 195406
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 067304
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 067304
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 067304
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 067304
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 067304
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 067304
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 067304
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 067304
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 067304
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 067304
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 067304
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 067304
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 067304
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 067304
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 067304
Viewed
Full text


Abstract