CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Surface States of Bi2Se3 Nanowires in the Presence of Perpendicular Magnetic Fields |
SHI Li-Kun, LOU Wen-Kai** |
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
SHI Li-Kun, LOU Wen-Kai 2014 Chin. Phys. Lett. 31 067304 |
|
|
Abstract We study the surface states of Bi2Se3 nanowires (NWs) in the presence of perpendicular magnetic fields. It is found that the minigap of Bi2Se3, arising from the quantized surface states around the circumference of NWs can be closed by perpendicular magnetic fields. With increasing magnetic fields, the Landau levels and edge states appear and localize at the center and edge of NWs, respectively. More interestingly, magnetic fields split the electron surface subbands with opposite tangential momenta, leading to specific edge states with low group velocity.
|
|
Published: 26 May 2014
|
|
PACS: |
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
73.21.Hb
|
(Quantum wires)
|
|
|
|
|
[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [2] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 [3] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 [4] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803 [5] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [6] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [7] Moore J E 2010 Nature 464 194 [8] Yang W, Chang K and Zhang S C 2008 Phys. Rev. Lett. 100 056602 [9] Zhang Z Z, Chang K and Peeters F M 2008 Phys. Rev. B 77 235411 Chang K and Lou W K 2011 Phys. Rev. Lett. 106 206802 [10] Zhang H J, Liu C X, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438 [11] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398 [12] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178 [13] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hansan M Z 2008 Nature 452 970 [14] Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009 Science 323 919 [15] Zhu J J, Yao D X, Zhang S C and Chang K 2011 Phys. Rev. Lett. 106 097201 [16] Miao M S, Yan Q, Van de Walle C G, Lou W K, Li L L and Chang K 2012 Phys. Rev. Lett. 109 186803 [17] Zhang D, Lou W K, Miao M S, Zhang S C and Chang K 2013 Phys. Rev. Lett. 111 156402 [18] Ferrari G and Cuoghi G 2008 Phys. Rev. Lett. 100 230403 [19] Ferrari G, Bertoni A, Goldoni G and Molinari E 2008 Phys. Rev. B 78 115326 [20] Bellucci S, Gonzlez J, Guinea F, Onorato P and Perfetto E 2007 J. Phys.: Condens. Matter 19 395017 [21] Perfetto E, Gonz' alez J, Guinea F, Bellucci S and Onorato P 2007 Phys. Rev. B 76 125430 [22] Peng H, Lai K, Kong D, Meister S, Chen Y, Qi X L, Zhang S C, Shen Z X and Cui Y 2010 Nat. Mater. 9 225 [23] Kong D, Randel J C, Peng H, Cha J J, Meister S, Lai K, Chen Y, Shen Z X, Manoharan H C and Cui Y 2010 Nano Lett. 10 329 [24] Hong S S, Kundhikanjana W, Cha J J, Lai K, Kong D, Meister S, Kelly M A, Shen Z X and Cui Y 2010 Nano Lett. 10 3118 [25] Cho S, Kim D, Syers P, Butch N P, Paglione J and Fuhrer M S 2012 Nano Lett. 12 469 [26] Cha J J, Williams J R, Kong D, Meister S, Peng H, Bestwick A J, Gallagher P, Goldhaber-Gordon D and Cui Y 2010 Nano Lett. 10 1076 [27] Bardarson J H, Brouwer P W and Moore J E 2010 Phys. Rev. Lett. 105 156803 [28] Zhang Y and Vishwanath A 2010 Phys. Rev. Lett. 105 206601 [29] Lou W K, Cheng F and Li J 2011 J. Appl. Phys. 110 093714 [30] Yin S L, Liang X J and Zhao H W 2013 Chin. Phys. Lett. 30 087305 [31] Zhang Y, Ran Y and Vishwanath A 2009 Phys. Rev. B 79 245331 [32] Imura K I, Takane Y and Tanaka A 2011 Phys. Rev. B 84 195406 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|