CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Single-ZnO-Nanobelt-Based Single-Electron Transistors |
JI Xiao-Fan1,2, XU Zheng1**, CAO Shuo2, QIU Kang-Sheng2, TANG Jing2, ZHANG Xi-Tian3, XU Xiu-Lai2** |
1Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 3Heilongjiang Key Laboratory for Low-Dimensional System and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025
|
|
Cite this article: |
JI Xiao-Fan, XU Zheng, CAO Shuo et al 2014 Chin. Phys. Lett. 31 067303 |
|
|
Abstract We fabricate single electron transistors based on a single ZnO nanobelt using standard micro-fabrication techniques. The transport properties of the devices are characterized at room temperature and at low temperature (4.2 K). At room temperature, the source-drain current increases linearly as the bias voltage increases, indicating a good ohmic contact in the transistors. At 4.2 K, a Coulomb blockade regime is observed up to a bias voltage of a few millivolts. With scanning the back gate voltage, Coulomb oscillations can be clearly resolved with a period around 1 V. From the oscillations, the charging energy for the single electron transistor is calculated to be about 10 meV, which suggests that confined quantum dots exist with sizes around 35 nm in diameter. The irregular Coulomb diamonds are observed due to the multi-tunneling junctions between dots in the nanobelt.
|
|
Published: 26 May 2014
|
|
PACS: |
73.23.Hk
|
(Coulomb blockade; single-electron tunneling)
|
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
85.35.Gv
|
(Single electron devices)
|
|
|
|
|
[1] Ozgur U et al 2005 J. Appl. Phys. 98 041301 [2] Utama M I B et al 2012 Nanoscale 4 1422 [3] Kim D M and Jeong Y H 2014 Nanowire Field Effect Transistors: Principles and Applications (New York: Springer) [4] Arnold M S, Avouris P, Pan Z W and Wang Z L 2003 J. Phys. Chem. B 107 659 [5] He J H, Lin Y H, McConney M E, Tsukruk V V, Wang Z L and Bao G 2007 J. Appl. Phys. 102 084303 [6] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003 [7] Sadek A Z, Choopun S, Wlodarski W, Ippolito S J and Kalantarzadeh K 2007 IEEE Sens. J. 7 919 [8] Lin C, Lin H, Li J and Li X 2008 J. Alloys Compd. 462 175 [9] Song J, Zhou J and Wang Z L 2006 Nano Lett. 6 1656 [10] Chiu S P, Lin Y H and Lin J J 2009 Nanotechnology 20 015203 [11] Van de Walle C G 2000 Phys. Rev. Lett. 476 331 [12] Zhang S B, Wei S H and Zunger A 2001 Phys. Rev. B 63 075205 [13] Xu X L, Lau S P, Chen J S, Chen G Y and Tay B K 2001 J. Cryst. Growth 223 201 [14] Wan Q, Huang J, Lu A X and Wang T H 2008 Appl. Phys. Lett. 93 103109 [15] Thompson R S, Li D D, Witte C M and Lu J G 2009 Nano Lett. 9 3991 [16] Thelander C, Martensson T, Bjork M T, Ohlsson B J, Larsson M W, Wallenberg L R and Samuelson L 2003 Appl. Phys. Lett. 83 2052 [17] Kouwenhoven L P, Johnson A T, Vandervaart N C, Harmans C and Foxon C T 1991 Phys. Rev. Lett. 67 1626 [18] Beenakker C W J 1991 Phys. Rev. B 44 1646 [19] Meirav U, Kastner M A and Wind S J 1990 Phys. Rev. Lett. 65 771 [20] Hofheinz M, Jehl X, Sanquer M, Molas G, Vinet M and Deleonibus S 2006 Appl. Phys. Lett. 89 143504 [21] Wang T H, Li H W and Zhou J M 2001 Chin. Phys. 10 844 [22] Postma H W C, Teepen T, Yao Z, Grifoni M and Dekker C 2001 Science 293 76 [23] Stampfer C, Schurtenberger E, Molitor F, Guttinger J, Ihn T and Ensslin K 2008 Nano Lett. 8 2378 [24] Xu X L, Irvine A C, Yang Y, Zhang X T and Williams D A 2010 Phys. Rev. B 82 195309 [25] Vanwees B J, Vanhouten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, Vandermarel D and Foxon C T 1988 Phys. Rev. Lett. 60 848 [26] Abergel D S L, Apalkov V, Berashevich J, Ziegler K and Chakraborty T 2010 Adv. Phys. 59 261 [27] Zhang X T, Lu H Q, Gao H, Wang X J, Xu H Y, Li Q and Hark S K 2009 Cryst. Growth Des. 9 364 [28] Lu H q, Gao H, Zhang E and Zhang Xt 2008 J. Synth. Cryst. 37 376 [29] Grabert H 1991 Z. Phys. B: Condens. Matter 85 319 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|