Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 060501    DOI: 10.1088/0256-307X/31/6/060501
GENERAL |
Error Analysis of the Density-Matrix Renormalization Group Algorithm for a Chain of Harmonic Oscillators
MA Yong-Jun1, WANG Jia-Xiang1**, XU Xin-Ye1, WEI Qi1, Sabre Kais2,3
1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062
2Departments of Chemistry and Physics, Purdue University, Indiana 47907, USA
3Qatar Environment and Energy Research Institute, Qatar Foundation, Doha, Qatar
Cite this article:   
MA Yong-Jun, WANG Jia-Xiang, XU Xin-Ye et al  2014 Chin. Phys. Lett. 31 060501
Download: PDF(594KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the application of the density-matrix renormalization group (DMRG) algorithm to a one-dimensional harmonic oscillator chain and compare the results with exact solutions, aiming at improving the algorithm's efficiency. It is demonstrated that the algorithm can show quite accurate results if the procedure is properly organized; for example, by using the optimized bases. The errors of calculated ground state energy and the energy gap between the ground state and the first excited state are analyzed, and they are found to be critically dependent upon the size of the system or the energy level structure of the studied system and the number of states targeted during the DMRG procedure.
Published: 26 May 2014
PACS:  05.10.Cc (Renormalization group methods)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/060501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/060501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Yong-Jun
WANG Jia-Xiang
XU Xin-Ye
WEI Qi
Sabre Kais
[1] White S R 1992 Phys. Rev. Lett. 69 2863
[2] White S R 1993 Phys. Rev. B 48 10345
[3] Zhuo W and Wang Y 2007 Chin. Phys. Lett. 24 3320
[4] White S R and Feiguin A E 2004 Phys. Rev. Lett. 93 076401
[5] Hu B and Wang J 2006 Phys. Rev. B 73 184305
[6] Caron L G and Moukouri S 1997 Phys. Rev. B 56 R8471
[7] Wei?e A, Fehske H, Wellein G and Bishop A R 2000 Phys. Rev. B 62 R747
[8] Weiss A, Wellein G and Fehske H 2002 High Performance Computing in Science and Engineering (Berlin: Springer) vol 02 p 131
[9] Zhang C, Jeckelmann E and White S R 1998 Phys. Rev. Lett. 80 2661
[10] Friedman B 2000 Phys. Rev. B 61 6701
[11] Kais S 2007 Adv. Chem. Phys. 134 493
[12] Wang J and Kais S 2004 Phys. Rev. A 70 022301
[13] Wang J and Kais S 2003 Int. J. Quantum Inform. 1 375
[14] Ren J, Wu Y and Zhu S 2012 Chin. Phys. Lett. 29 060305
[15] Zanardi P 2002 Phys. Rev. A 65 042101
[16] Wang X 2001 Phys. Rev. A 64 012313
[17] Gu S, Deng S, Li Y and Lin H 2004 Phys. Rev. Lett. 93 086402
[18] Wang J, Hu B and Wang X 2007 Prog. Theor. Phys. Suppl. 166 95
Related articles from Frontiers Journals
[1] Xi-Ci Yang, Z. Y. Xie, and Xiao-Tao Yang. Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(2): 060501
[2] Teng Liu, Gao-Ke Hu, Jia-Qi Dong, Jing-Fang Fan, Mao-Xin Liu, and Xiao-Song Chen. Renormalization Group Theory of Eigen Microstates[J]. Chin. Phys. Lett., 2022, 39(8): 060501
[3] X. F. Liu, Y. F. Fu, W. Q. Yu, J. F. Yu, and Z. Y. Xie. Variational Corner Transfer Matrix Renormalization Group Method for Classical Statistical Models[J]. Chin. Phys. Lett., 2022, 39(6): 060501
[4] Zhen Ning, Bo Fu, Qinwei Shi, and Xiaoping Wang. Universal Minimum Conductivity in Disordered Double-Weyl Semimetal[J]. Chin. Phys. Lett., 2020, 37(11): 060501
[5] Jing Chen, Hai-Jun Liao, Hai-Dong Xie, Xing-Jie Han, Rui-Zhen Huang, Song Cheng, Zhong-Chao Wei, Zhi-Yuan Xie, Tao Xiang. Phase Transition of the q-State Clock Model: Duality and Tensor Renormalization[J]. Chin. Phys. Lett., 2017, 34(5): 060501
[6] ZHOU Zong-Li, LI Min, YE Jian, LI Dong-Peng, LOU Ping, ZHANG Guo-Shun. The Heisenberg Model after an Interaction Quench[J]. Chin. Phys. Lett., 2014, 31(10): 060501
[7] WANG Shun, XIE Zhi-Yuan, CHEN Jing, Bruce Normand, XIANG Tao. Phase Transitions of Ferromagnetic Potts Models on the Simple Cubic Lattice[J]. Chin. Phys. Lett., 2014, 31(07): 060501
[8] WANG Xiao-Hong**, ZHOU Quan . Renormalization Group Analysis of Weakly Rotating Turbulent Flows[J]. Chin. Phys. Lett., 2011, 28(12): 060501
[9] WANG Meng-Xiong, CAI Jian-Wei, XIE Zhi-Yuan, CHEN Qiao-Ni, ZHAO Hui-Hai, WEI Zhong-Chao. Investigation of the Potts Model on Triangular Lattices by the Second Renormalization of Tensor Network States[J]. Chin. Phys. Lett., 2010, 27(7): 060501
[10] TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation[J]. Chin. Phys. Lett., 2009, 26(6): 060501
[11] LIU Zheng-Feng, WANG Xiao-Hong,. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique[J]. Chin. Phys. Lett., 2008, 25(2): 060501
Viewed
Full text


Abstract