Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 050502    DOI: 10.1088/0256-307X/31/5/050502
GENERAL |
Effect of Topological Connectivity on Firing Pattern Transitions in Coupled Neurons
LIANG Li-Si1, ZHANG Ji-Qian1,2**, LIU Le-Zhu1, WANG Mao-Sheng1, WANG Bing-Hong2
1College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000
2Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
LIANG Li-Si, ZHANG Ji-Qian, LIU Le-Zhu et al  2014 Chin. Phys. Lett. 31 050502
Download: PDF(1384KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using the coupled model of Hindmarsh–Rose neuronal systems, we numerically investigate the effect of topology structures on the firing patterns transition (FPT). A four-cell coupled system with all possible configurations are studied. We select the membrane current Iext as a controllable parameter, and set it to be near the left side for one of the bifurcation points. It is found that to have a response from some external stimuli with the proper amplitude and frequencies, the transition will appear between different firing states only when the cells in the system are coupled with some proper topological structures, which implies the occurrence of FPT induced by the configuration in the coupled system. Similar FPT phenomena could also be observed in a five-cell coupled system. Furthermore, we find that such transition behaviors may have some inherent relevance with the synchronization error and the average connective number among cells in the coupled system for different topology structures. These results suggest that the biological neuron systems may achieve an effective response to the external feeble stimulus by selecting the proper configuration and using the corresponding transition mode.
Published: 24 April 2014
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  68.35.Rh (Phase transitions and critical phenomena)  
  87.19.lj (Neuronal network dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/050502       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/050502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Li-Si
ZHANG Ji-Qian
LIU Le-Zhu
WANG Mao-Sheng
WANG Bing-Hong
[1] Dorogovtsev S N and Mendes J F F 2002 Adv. Phys. 51 1079
[2] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[3] Strogartz S H 2001 Nature 410 268
[4] Cao J D, Yuan K and Li H X 2006 IEEE Trans. Neural Netw. 17 1646
[5] Zhou J, Wu X Q, Yu W W, Small M and Lu J A 2008 Chaos 18 043111
[6] Wu W and Chen T P 2008 IEEE Trans. Neural Netw. 19 319
[7] Yu H J and Peng J 2006 Chaos Solitons Fractals 29 342
[8] Li Y L, Wu M, Ma J, Chen Z Y and Wang Y H 2009 Chaos Solitons Fractals 39 1472
[9] Han F, Lu Q S, Wiercigroch M and Ji Q B 2009 Int. J. Non-Linear Mech. 44 298
[10] Adhikari M B, Prasad A and Dhamala M 2011 Chaos 21 023116
[11] Shrii M M, Senthilkumar D V and Kurths J 2012 Europhys. Lett. 98 10003
[12] Wei D Q, Luo X S and Qin Y H 2008 Physica A 387 2155
[13] Wang Q Y, Duan Z S, Perc M and Chen G R 2008 Europhys. Lett. 83 50008
[14] Dokukina I V, Gracheva M E, Grachev E A and Gunton J D 2008 Physica D 237 745
[15] Wang Q Y, Chen G R and Perc M 2011 PLoS ONE 6 e15851
[16] Sun X J, Lei J Z, Perc M, Kurths J and Chen G R 2011 Chaos 21 016110
[17] He D, Hu G, Zhan M, Ren W and Gao Z 2002 Phys. Rev. E 65 055204
[18] Sánchez A D, López J M and Rodriguez M A 2002 Phys. Rev. Lett. 88 048701
[19] Wang P, Zhang J Q and Ren H L 2010 Chin. J. Chem. Phys. 23 23
[20] Zhang J Q, Wang C D, Wang M S and Huang S F 2011 Neurocomputing 74 2961
[21] Huang S F, Zhang J Q and Ding S J 2009 Chin. Phys. Lett. 26 050502
[22] Chen H S, Zhang J Q, Liu J Q 2008 Physica A 387 1071
[23] Ma J, Wang C N, Jin W Y and Wu Y 2010 Appl. Math. Comput. 217 3844
[24] Wang C N, Ma J, Tang J and Li Y L 2010 Commun. Theor. Phys. 53 382
[25] Gong Y B, Lin X, Wang L, Hao Y H 2011 Sci. Chin. Chem. 54 1498
[26] Hindmarsh J L and Rose R M 1994 Philos. Trans. R. Soc. B 346 129
[27] Gerstner W and Kistle W M 2002 Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge: Cambridge University Press) p 1
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 050502
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 050502
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 050502
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 050502
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 050502
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 050502
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 050502
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 050502
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 050502
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 050502
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 050502
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 050502
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 050502
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 050502
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 050502
Viewed
Full text


Abstract