Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 050501    DOI: 10.1088/0256-307X/31/5/050501
GENERAL |
Changes in Repetitive Firing Rate Related to Phase Response Curves for Andronov–Hopf Bifurcations
Yasuomi D. Sato1,2,3**
1Department of Brain Science and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
2Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe University, Ruth-Moufang-Str.1, D60438, Frankfurt am Main, Germany
3Institute of Industrial Science, the University of Tokyo, 4-6-1, Komaba, Meguro, Tokyo, 153-8505, Japan
Cite this article:   
Yasuomi D. Sato 2014 Chin. Phys. Lett. 31 050501
Download: PDF(515KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study specific changes in repetitive firing in the two-dimensional Hindmarsh–Rose (2dHR) oscillatory system that undergoes a bifurcation transition from the supercritical Andronov–Hopf (AH) type to the subcritical Andronov–Hopf (SAH) type. We identify dynamical mechanisms which are responsible for changes of the repetitive firing rate during the AH to SAH bifurcation transitions. These include frequency-shift functions in response to small perturbations of a timescale parameter, its multiplicative parameter, and an external input current in the 2dHR oscillatory system. The frequency-shift functions are explicitly represented as functions relating to the phase response curves (PRCs). Then, we demonstrate that when the timescale is normal and relatively fast, the repetitive firing rate slightly increases and decreases respectively during the AH to SAH bifurcation transition with a change of the intrinsic parameter, whereas it decreases during the SAH to AH bifurcation transition with an increase in the timescale. By analyzing the three different frequency-shift functions, we show that such changes of the repetitive firing rate depend largely on changes of the PRC size. The PRC size for the SAH bifurcation shrinks to the PRC size for the AH bifurcation.
Published: 24 April 2014
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.19.ll (Models of single neurons and networks)  
  87.19.ln (Oscillations and resonance)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/050501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/050501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yasuomi D. Sato
[1] Brown E N et al 2004 Nat. Neurosci. 7 456
[2] Hansel D et al 1995 Neural Comput. 7 307
[3] Ermentrout B 1996 Neural Comput. 8 979
[4] Sato Y D 2012 Phys. Rev. E 85 031910
[5] Prescott S A et al 2008 PLoS Comput. Biol. 4 e1000198
[6] Stiefel et al 2008 PLoS ONE 3 e3947
[7] Steyn-Ross D A and Steyn-Ross M 2010 Modeling Phase Transitions in the Brain (New York: Springer)
[8] Sato Y D 2013 Europhys. Lett. 102 58004
[9] Sato Y D and Aihara K Neural Comput. (submitted)
[10] Sato Y D and Shiino M 2002 Phys. Rev. E 66 041903
[11] Sato Y D and Shiino M 2007 Phys. Rev. E 75 011909
[12] Tsuji S et al 2007 Int. J. Bifurcation Chaos Appl. Sci. Eng. 17 985
[13] Rose R M and Hindmarsh J L 1989 Proc. R. Soc. London B 237 267
[14] Khan J A et al 2011 Chin. Phys. Lett. 28 110205
[15] Izhikevich E M 2007 Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Cambridge, MA: MIT Press)
[16] Izhikevich E M 2000 Int. J. Bifurcation Chaos Appl. Sci. Eng. 10 1171
[17] Hoppensteadt F and Izhikevich E 1997 Weakly Connected Neural Networks (New York: Springer)
[18] Schwemmer M A and Lewis T J 2011 Phys. Rev. E 83 031906
[19] Izhikevich E M and Kuramoto Y 2006 Encycl. Math. Phys. 5 448
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 050501
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 050501
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 050501
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 050501
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 050501
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 050501
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 050501
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 050501
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 050501
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 050501
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 050501
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 050501
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 050501
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 050501
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 050501
Viewed
Full text


Abstract