Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 050301    DOI: 10.1088/0256-307X/31/5/050301
GENERAL |
Quantum Search Algorithm Based on Multi-Phase
LI Tan1,2, BAO Wan-Su1,2**, LIN Wen-Qian1,2, ZHANG Hou1,2, FU Xiang-Qun1,2
1The PLA Information Engineering University, Zhengzhou 450001
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
LI Tan, BAO Wan-Su, LIN Wen-Qian et al  2014 Chin. Phys. Lett. 31 050301
Download: PDF(1246KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The success probability of the Grover quantum search algorithm decreases quickly when the fraction of target items exceeds 1/4, where the phase plays a significant role. Therefore, we use multiple phases to complement each other. We obtain three useful properties and an important theorem of the success probability and design a systematic solution of the optimal phases for an arbitrary number of phases. Based on these results, we finally propose a multi-phase quantum search algorithm whose success probability rises with the increase of the number of phases with just a single iteration, and it tends to be 100% when the fraction of target items is over a lower limit.

Published: 24 April 2014
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/050301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/050301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Tan
BAO Wan-Su
LIN Wen-Qian
ZHANG Hou
FU Xiang-Qun

[1] Grover L K 1996 Proc. 28th Annual Symposium on Theory of Computing (New York: ACM Press) p 212
[2] Grover L K 1997 Phys. Rev. Lett. 79 325
[3] Grover L K 1998 Phys. Rev. Lett. 80 4329
[4] Long G L, Li Y S, Zhang W L and Niu L 1999 Phys. Lett. A 262 27
[5] Long G L 2001 Phys. Rev. A 64 022307
[6] Tulsi A 2008 Phys. Rev. A 78 022332
[7] Biham E, Biham O, Biron D, Grassl M and Lidar D A 1999 Phys. Rev. A 60 2742
[8] Biham E and Kenigsberg D 2002 Phys. Rev. A 66 062301
[9] Brassard G, Hoyer P, Mosca M and Tapp A 2000 arXiv:quant-ph/0005055v1
[10] Li X and Li P C 2012 J. Quantum Inf. Sci. 2 28
[11] Younes A 2013 Appl. Math. Inf. Sci. 7 93
[12] Zhong P C and Bao W S 2008 Chin. Phys. Lett. 25 2774
[13] Hoyer P 2000 Phys. Rev. A 62 052304
[14] Long G L, Li X and Sun Y 2002 Phys. Lett. A 294 143
[15] Li P C and Li S Y 2007 Phys. Lett. A 366 42
[16] Toyama F M, Van Dijk W, Nogami Y, Tabuchi M and Kimura Y 2008 Phys. Rev. A 77 042324
[17] Zhong P C 2009 Master thesis (Zhengzhou: PLA Information Engineering University) (in Chinese)

Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050301
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 050301
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 050301
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 050301
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 050301
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 050301
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 050301
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 050301
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 050301
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 050301
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050301
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 050301
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 050301
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 050301
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 050301
Viewed
Full text


Abstract