Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 050302    DOI: 10.1088/0256-307X/31/5/050302
GENERAL |
Probing Energy Spectrum of Quadruple Quantum Dots with Microwave Field
SHANG Ru-Nan, LI Hai-Ou, CAO Gang, YU Guo-Dong, XIAO Ming, TU Tao, GUO Guo-Ping**
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
SHANG Ru-Nan, LI Hai-Ou, CAO Gang et al  2014 Chin. Phys. Lett. 31 050302
Download: PDF(764KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A double quantum dot defines a qubit by a two-level system. The coupling between two qubits induces a double two-level system into a four-level system. We study experimentally the coupling between two capacitive coupled GaAs/AlGaAs double quantum dots while tuning the energy detuning of each double quantum dot simultaneously. Applying microwave photons (at a frequency of 20 GHz) on this system and observing the resonance tunneling with a quantum point contact detector, we obtain an excitation spectrum which is consistent with the numerical simulation result of a coupled two-qubit Hamiltonian. This study demonstrates that a double quantum dot can be exploited as an extraordinary platform for controlled quantum gates.
Published: 24 April 2014
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Bg (Entanglement production and manipulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/050302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/050302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHANG Ru-Nan
LI Hai-Ou
CAO Gang
YU Guo-Dong
XIAO Ming
TU Tao
GUO Guo-Ping
[1] Ciorga M, Sachrajda A S, Hawrylak P, Gould C, Zawadzki P, Jullian S, Feng Y and Wasilewski Z 2000 Phys. Rev. B 61 R16315
[2] Kouwenhoven L P, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701
[3] Wiel W G, Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[4] Fujisawa T, Hayashi T and Sasaki S 2006 Rep. Prog. Phys. 69 759
[5] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[6] Petersson K D, Petta J R, Lu H and Gossard A G 2010 Phys. Rev. Lett. 105 246804
[7] Hayashi T, Fujisawa T, Cheong H D, Jeong Y H and Hirayama Y 2003 Phys. Rev. Lett. 91 226804
[8] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430
[9] Petta J R, Lu H and Gossard A C 2010 Science 327 669
[10] Gaudreau L, Grange G, Kam A, Aers G C, Studenikin S A, Zawadzki P, Ladriere M P, Wasilewski Z R and Sachrajda A S 2012 Nat. Phys. 493 424
[11] Oliver W D, Yu Y, Lee J C, Berggren K K, Levitov L S and Orlando T P 2005 Science 310 1653
[12] Maune B M, Borselli M G, Huang B, Ladd T D, Deelman P W, Holabird K S, Kiselev A A, Rodriguez I A, Ross R S, Schmitz A E, Sokolich M, Watson C A, Gyure1 M F and Hunter A T 2012 Nature 481 344
[13] Berezovsky J, Mikkelsen M H, Stoltz N G, Coldren L A and Awschalom D D 2008 Science 320 349
[14] Press D, Ladd T D, Zhang B and Yamamoto Y 2008 Nature 456 218
[15] Shulman M D, Dial O E, Harvey S P, Bluhm H, Umansky V, Yacoby A 2012 Science 336 202
[16] Petersson K D, Smith C G, Anderson D, Atkinson P, Jones G A C and Ritchie D A 2009 Phys. Rev. Lett. 103 016805
[17] Fujisawa T, Shinkai G, Hayashi T, Ota T 2011 Physica E 43 730
[18] Weperen I, Armstrong B D, Laird E A, Medford J, Marcus C M, Hanson M P and Gossard A C 2011 Phys. Rev. Lett. 107 030506
[19] Cao G, Li H O, Tu T, Wang L, Zhou C, Xiao M, Guo G C, Jiang H W and Guo G P 2013 Nat. Commun. 4 1401
[20] Kouwenhoven L P, Jauhar S, Orenstein J and McEuen P L 1994 Phys. Rev. Lett. 73 3443
[21] Oosterkamp T H, Kouwenhoven L P, Koolen A E A, Vaart N C and Harmans C J P M1997 Phys. Rev. Lett. 78 1536
[22] Oosterkamp T H, Fujisawa T, Wiel W G, Ishibashi K, V Hijman R V, Tarucha S and Kouwenhoven L P K 1998 Nature 395 873
[23] Petta J R, Johnson A C, Marcus C M, Hanson M P and Gossard A C 2004 Phys. Rev. Lett. 93 186802
[24] Shang R N, Li H O, Cao G, Xiao M, Tu T, Jiang H W, Guo G C and Guo Guo-Ping 2013 Appl. Phys. Lett. 103 162109
[25] Cao G, Wang L, Tu T, Li H O, Xiao M and Guo G P 2012 Chin. Phys. Lett. 29 030306
[26] Cao C, Li H O, Tu T, Zhou C, Hao X J, Guo G C and Guo G P 2009 Chin. Phys. Lett. 26 097302
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 050302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 050302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 050302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 050302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 050302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 050302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 050302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 050302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 050302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 050302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 050302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 050302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 050302
Viewed
Full text


Abstract