GENERAL |
|
|
|
|
Probing Energy Spectrum of Quadruple Quantum Dots with Microwave Field |
SHANG Ru-Nan, LI Hai-Ou, CAO Gang, YU Guo-Dong, XIAO Ming, TU Tao, GUO Guo-Ping** |
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
SHANG Ru-Nan, LI Hai-Ou, CAO Gang et al 2014 Chin. Phys. Lett. 31 050302 |
|
|
Abstract A double quantum dot defines a qubit by a two-level system. The coupling between two qubits induces a double two-level system into a four-level system. We study experimentally the coupling between two capacitive coupled GaAs/AlGaAs double quantum dots while tuning the energy detuning of each double quantum dot simultaneously. Applying microwave photons (at a frequency of 20 GHz) on this system and observing the resonance tunneling with a quantum point contact detector, we obtain an excitation spectrum which is consistent with the numerical simulation result of a coupled two-qubit Hamiltonian. This study demonstrates that a double quantum dot can be exploited as an extraordinary platform for controlled quantum gates.
|
|
Published: 24 April 2014
|
|
PACS: |
03.67.-a
|
(Quantum information)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
|
|
|
[1] Ciorga M, Sachrajda A S, Hawrylak P, Gould C, Zawadzki P, Jullian S, Feng Y and Wasilewski Z 2000 Phys. Rev. B 61 R16315 [2] Kouwenhoven L P, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701 [3] Wiel W G, Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1 [4] Fujisawa T, Hayashi T and Sasaki S 2006 Rep. Prog. Phys. 69 759 [5] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217 [6] Petersson K D, Petta J R, Lu H and Gossard A G 2010 Phys. Rev. Lett. 105 246804 [7] Hayashi T, Fujisawa T, Cheong H D, Jeong Y H and Hirayama Y 2003 Phys. Rev. Lett. 91 226804 [8] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430 [9] Petta J R, Lu H and Gossard A C 2010 Science 327 669 [10] Gaudreau L, Grange G, Kam A, Aers G C, Studenikin S A, Zawadzki P, Ladriere M P, Wasilewski Z R and Sachrajda A S 2012 Nat. Phys. 493 424 [11] Oliver W D, Yu Y, Lee J C, Berggren K K, Levitov L S and Orlando T P 2005 Science 310 1653 [12] Maune B M, Borselli M G, Huang B, Ladd T D, Deelman P W, Holabird K S, Kiselev A A, Rodriguez I A, Ross R S, Schmitz A E, Sokolich M, Watson C A, Gyure1 M F and Hunter A T 2012 Nature 481 344 [13] Berezovsky J, Mikkelsen M H, Stoltz N G, Coldren L A and Awschalom D D 2008 Science 320 349 [14] Press D, Ladd T D, Zhang B and Yamamoto Y 2008 Nature 456 218 [15] Shulman M D, Dial O E, Harvey S P, Bluhm H, Umansky V, Yacoby A 2012 Science 336 202 [16] Petersson K D, Smith C G, Anderson D, Atkinson P, Jones G A C and Ritchie D A 2009 Phys. Rev. Lett. 103 016805 [17] Fujisawa T, Shinkai G, Hayashi T, Ota T 2011 Physica E 43 730 [18] Weperen I, Armstrong B D, Laird E A, Medford J, Marcus C M, Hanson M P and Gossard A C 2011 Phys. Rev. Lett. 107 030506 [19] Cao G, Li H O, Tu T, Wang L, Zhou C, Xiao M, Guo G C, Jiang H W and Guo G P 2013 Nat. Commun. 4 1401 [20] Kouwenhoven L P, Jauhar S, Orenstein J and McEuen P L 1994 Phys. Rev. Lett. 73 3443 [21] Oosterkamp T H, Kouwenhoven L P, Koolen A E A, Vaart N C and Harmans C J P M1997 Phys. Rev. Lett. 78 1536 [22] Oosterkamp T H, Fujisawa T, Wiel W G, Ishibashi K, V Hijman R V, Tarucha S and Kouwenhoven L P K 1998 Nature 395 873 [23] Petta J R, Johnson A C, Marcus C M, Hanson M P and Gossard A C 2004 Phys. Rev. Lett. 93 186802 [24] Shang R N, Li H O, Cao G, Xiao M, Tu T, Jiang H W, Guo G C and Guo Guo-Ping 2013 Appl. Phys. Lett. 103 162109 [25] Cao G, Wang L, Tu T, Li H O, Xiao M and Guo G P 2012 Chin. Phys. Lett. 29 030306 [26] Cao C, Li H O, Tu T, Zhou C, Hao X J, Guo G C and Guo G P 2009 Chin. Phys. Lett. 26 097302 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|