CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Calculation of Exchange Constants in Spinels Chromites ZnxCo1−xCr2O4 |
R. Masrour1,2**, M. Hamedoun3, A. Benyoussef 2,3,4, E. K. Hlil5, O. Mounkachi3, H. El Moussaoui3 |
1Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi, BP 46 63000, Morocco
2LMPHE, URAC 12, Faculté des Sciences, Université Mohamed V-Agdal, Rabat, Morocco
3Institute for Nanomaterials and Nanotechnologies, MAScIR, Rabat, Morocco
4Academie Hassan II des Sciences et Techniques, Rabat, Morocco
5Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex, France |
|
Cite this article: |
R. Masrour, M. Hamedoun, A. Benyoussef et al 2014 Chin. Phys. Lett. 31 037501 |
|
|
Abstract The exchange interactions of the nearest-neighbor exchange constant between tetrahedral and octahedral sublattices (JAB(x)), nearest-neighbor exchange constant inside tetrahedral sublattice (JAA(x)) and nearest-neighbor exchange constant inside octahedral sublattice (JBB(x)) in cobalt and zinc chromites are calculated using the probability distribution. The Curie–Weiss temperature and the critical temperature are deduced using the mean field and the high temperature series expansion theories in ZnxCo1−xCr2O4. The critical exponent associated with the magnetic susceptibility (γ) is deduced for CoCr2O4.
|
|
Received: 04 October 2013
Published: 28 February 2014
|
|
PACS: |
75.30.Et
|
(Exchange and superexchange interactions)
|
|
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
|
|
|
[1] Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T and Tokura Y 2006 Phys. Rev. Lett. 96 207204
[2] Groenou B V, Bergers P F and Stuyts A L 1969 Mater. Sci. Eng. 3 317
[3] Yafet Y and Kittel C 1952 Phys. Rev. 87 290
[4] Kaplan T A, Dwight K, Lyons D H and Menyuk M 1961 J. Appl. Phys. 32 13S
[5] Kaplan T A 1959 Phys. Rev. 116 888
[6] Menyuk N, Dwight K and Wold A L 1964 J. Phys. France 25 528
[7] Tomiyasu K, Fukunaga J and Suzuki H 2004 Phys. Rev. B 70 214434
[8] Kagomiya I, Sawa H, Siratori K, Kohn K, Toki M, Hata Y and Kita E 2002 Ferroelectrics 268 327
[9] Lee S H et al 2007 J. Phys.: Condens. Matter 19 145259
[10] Lee S H, Ratcliff W, Huang Q, Kim T H and Cheong S W 2008 Phys. Rev. B 77 014405
[11] Kino Y and Luthi B 1971 Solid State Commun. 9 805
[12] Lee S H, Broholm C, Kim T H, Ratcliff W and Cheong S W 2000 Phys. Rev. Lett. 84 3718
[13] Brent C M, J E Drews, Seshadri R, Stoudenmire M and Arthur P R J 2009 J. Phys.: Condens. Matter 21 216007
[14] Kant C, Deisenhofer J, Tsurkan V and Loidl A 2010 J. Phys.: Conf. Ser. 200 032032
[15] Hamedoun M, Masrour R, Bouslykhane K, Hourmatallah A, Benzakour N and Filali A 2007 Chin. Phys. Lett. 24 2077
[16] Martinho H, Moreno N O, Sanjurjo J A, Rettori C, Garc?a-Adeva A J, Huber D L, Oseroff S B, Ratcliff W, Cheong S W, Pagliuso P G, Sarrao J L and Martins G B 2001 J. Appl. Phys. 89 7050
[17] G A Baker and Graves-Morris P 1981 Padé Approximants (London: Addison-Wesley)
[18] Hunter D L and Baker G A 1973 Phys. Rev. B 7 3346
[19] D S Gaunt and Guttmann A J 1974 Phase Transit. Crit. Phenom. (New York: Academic) 3 181
[20] Afif K, Benyoussef A and Hamedoun M 2002 Chin. Phys. Lett. 19 1187 and references therein |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|