Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 037402    DOI: 10.1088/0256-307X/31/3/037402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of the O2/Ar Pressure Ratio on the Microstructure and Surface Morphology of Epi-MgO/IBAD-MgO Templates for GdBa2Cu3O7 Coated Conductors
LUO Qiang, LIU Lin-Fei, XIAO Gui-Na, LI Yi-Jie**
Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
LUO Qiang, LIU Lin-Fei, XIAO Gui-Na et al  2014 Chin. Phys. Lett. 31 037402
Download: PDF(1178KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-quality epi-MgO buffer layers under different O2/Ar pressure ratios are fabricated by rf magnetron sputtering on textured IBAD-MgO templates. Under the total deposition pressure remaining constant (14 Pa), the effect of changing the ratio of O2/Ar pressure from 1:4 to 3:2 on the microstructure and surface morphology of epi-MgO films is studied. The microstructure and morphology of epi-MgO are fully characterized by x-ray diffraction, atom force microscope and scanning electron microscope. The best texture quality of epi-MgO with an out-plane Δω value of 1.8° and an in-plane Δ? value of 5.22° are obtained under the ratio of O2/Ar pressure 3:2. Further, the surface morphology indicates that the surface of epi-MgO is smooth with rms surface roughness about 4.7 nm at O2/Ar pressure ratio 3:2. After that, GdBa2Cu3O7 (GBCO) layers are deposited on the CeO2 cap layer buffered epi-MgO/IBAD-MgO templates to assess the efficiency of such a buffer layer stack. The critical current density of GBCO films (thickness of 200 nm) is higher than 3 MA/cm2, indicating that epi-MgO/IBAD-MgO is promising for depositing superconducting layers with a higher critical current density.
Received: 11 December 2013      Published: 28 February 2014
PACS:  74.25.-q (Properties of superconductors)  
  74.25.Sv (Critical currents)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  81.15.Fg (Pulsed laser ablation deposition)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/037402       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/037402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Qiang
LIU Lin-Fei
XIAO Gui-Na
LI Yi-Jie
[1] Kang S, Goyal A and J Li 2006 Science 311 1911
[2] Foltyn S R and Arendt P N 2003 Appl. Phys. Lett. 82 4519
[3] MacManus-Driscoll J L, Foltyn S R and Jia Q X 2004 Nat. Mater. 3 439
[4] Huang B P, Zheng L R, Gao J X and Wang L W 1998 Chin. Phys. Lett. 15 764
[5] Zhao Y and Li X F 2012 Supercond. Sci. Technol. 25 015008
[6] Shi D Q, Ma P, Rock-Kil K, Kim H S, Chung J K, Song K J and Chan P 2007 Chin. Phys. B 16 2142
[7] Tsai C F and Lee J H 2012 Supercond. Sci. Technol. 25 075016
[8] Iijima Y, Tanabe N, Ikeno Y and Kohno O 1991 Physica C 185 1959
[9] Reade R P, Berdahl P, Russo R E and Garrison S M 1992 Appl. Phys. Lett. 61 2231
[10] Wu X D, Foltyn S R, Arendt P, Townsend J, Adams C and Campbell I H 1994 Appl. Phys. Lett. 65 1961
[11] Wang S F, Zhao S Q, Liu Z, Zhou Y L and Chen Z H 2006 Chin. Phys. B 15 444
[12] Sonnenberg N, Longo A S, Cima M J, Chang B P, Ressler K G, McIntyre P C and Liu Y P 1993 J. Appl. Phys. 74 1027
[13] Arendt P N, Foltyn S R 2004 MRS Bull. 29 543
[14] Wiesmann J, Heinemann K and Freyhardt H C 1996 Nucl. Instrum. Methods Phys. Res. Sect. B 120 290
[15] Wang C P, Do K B, Beasley M R, Geballe T H and Hammond R H 1997 Appl. Phys. Lett. 71 2955
[16] Soto R, Mergui S and Schmidt P E 1997 Thin Solid Films 308 611
[17] Rhee S H, Yang Y, Choi H S, Myoung J M and Kima K 2001 Thin Solid Films 396 23
[18] Cáceres D, Vergara I and González R 2003 J. Appl. Phys. 93 1
[19] Lee J H, Eun J H, Park S Y, Kim S G and Kim H J 2003 Thin Solid Films 435 95
[20] Matias V, Gibbons B J and Feldmann D M 2007 Physica C 460 312
[21] Li Y J and Liu L F 2011 IEEE Trans. Appl. Supercond. 21 2924
[22] Xu D, Liu L F and Li Y J 2013 Nanoscale Res. Lett. 8 109
[23] Liu L F and Li Y J 2010 IEEE Trans. Appl. Supercond. 20 1553
Related articles from Frontiers Journals
[1] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 037402
[2] Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo, and Hechang Lei. Superconductivity in Kagome Metal YRu$_{3}$Si$_{2}$ with Strong Electron Correlations[J]. Chin. Phys. Lett., 2022, 39(8): 037402
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 037402
[4] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 037402
[5] Yutao Jiang, Ze Yu, Yuxin Wang, Tenglong Lu, Sheng Meng, Kun Jiang, and Miao Liu. Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation[J]. Chin. Phys. Lett., 2022, 39(4): 037402
[6] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 037402
[7] Yuxin Yang, Wenhui Fan, Qinghua Zhang, Zhaoxu Chen, Xu Chen, Tianping Ying, Xianxin Wu, Xiaofan Yang, Fanqi Meng, Gang Li, Shiyan Li, Lin Gu, Tian Qian, Andreas P. Schnyder, Jian-gang Guo, and Xiaolong Chen. Discovery of Two Families of VSb-Based Compounds with V-Kagome Lattice[J]. Chin. Phys. Lett., 2021, 38(12): 037402
[8] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 037402
[9] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 037402
[10] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 037402
[11] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 037402
[12] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 037402
[13] Gaoning Zhang, Xianbiao Shi, Xiaolei Liu, Wei Xia, Hao Su, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, Weiwei Zhao, and Yanfeng Guo. de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions[J]. Chin. Phys. Lett., 2020, 37(8): 037402
[14] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 037402
[15] Bo-Jin Pan, Kang Zhao, Tong Liu, Bin-Bin Ruan, Shuai Zhang, Gen-Fu Chen, Zhi-An Ren. Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density[J]. Chin. Phys. Lett., 2019, 36(1): 037402
Viewed
Full text


Abstract