Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 034301    DOI: 10.1088/0256-307X/31/3/034301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Scattering of S0 Lamb Mode from a Blind Hole in a Plate Using Mindlin/Mindlin Plate Theory
ZHANG Hai-Yan1**, YAO Jie-Cong1, MA Shi-Wei2
1School of Communication and Information Engineering, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072
2Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072
Cite this article:   
ZHANG Hai-Yan, YAO Jie-Cong, MA Shi-Wei 2014 Chin. Phys. Lett. 31 034301
Download: PDF(670KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An analytical model of Lamb wave scattering from a circular blind hole in isotropic plates is presented using the Mindlin plate theory for describing in-plane and flexural wave modes simultaneously. The model makes use of the wave function expansion technique and the boundary conditions at the hole edge to evaluate the scattered far fields of three fundamental guided wave modes. Comparisons are made to existing approximate models using Poisson/Kirchhoff theory and Poisson/Mindlin theory and a 3D model using the exact 3D equations. The results reveal that the present model is more consistent with the exact 3D model at higher frequencies than existing approximate models.
Received: 12 December 2013      Published: 28 February 2014
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/034301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/034301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hai-Yan
YAO Jie-Cong
MA Shi-Wei
[1] Zhang H Y and Yu J B 2011 Chin. Phys. B 20 094301
[2] Yu Y L, Zhang H Y, Shi F F, Feng G R and Ma S W 2013 Chin. Phys. Lett. 30 034301
[3] Ng C T, Vedit M, Rose L R F and Wang C H 2012 J. Sound Vib. 331 4870
[4] McKeon J C P and Hinders M K 1999 J. Sound Vib. 224 843
[5] Grahn T 2003 Wave Motion 37 63
[6] Wang C H and Chang F K 2005 J. Sound Vib. 282 429
[7] Cegla F B, Rohde and Vedit M 2008 Wave Motion 45 162
[8] Moreau L, Caleap M, Velichko A and Wilcox P D 2011 Wave Motion 48 586
[9] Moreau L, Caleap M, Velichko A and Wilcox P D 2012 Wave Motion 49 375
[10] Vemula C and Norris A N 1997 Wave Motion 26 1
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 034301
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 034301
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 034301
[4] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 034301
[5] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 034301
[6] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 034301
[7] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 034301
[8] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 034301
[9] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 034301
[10] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 034301
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 034301
[12] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 034301
[13] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 034301
[14] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 034301
[15] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 034301
Viewed
Full text


Abstract