Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 034302    DOI: 10.1088/0256-307X/31/3/034302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Real-Time Monitoring and Quantitative Evaluation of Cavitation Bubbles Induced by High Intensity Focused Ultrasound Using B-Mode Imaging
YU Jie1,2, CHEN Chu-Yi1, CHEN Gong2, GUO Xia-Sheng1, MA Yong2, TU Juan1**, ZHANG Dong1,3**
1Key Laboratory of Modern Acoustics, School of Physics, Nanjing University, Nanjing 210093
2Traditional Chinese Medicine Hospital of Jiangsu Province, Nanjing 210023
3State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
YU Jie, CHEN Chu-Yi, CHEN Gong et al  2014 Chin. Phys. Lett. 31 034302
Download: PDF(1805KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A software-based method is proposed to eliminate the flooding interference strips in B-mode images, and to evaluate the cavitation bubbles generated during high intensity focused ultrasound (HIFU) exposures. In vitro tissue phantoms are exposed to 1.12 MHz HIFU pulses with a fixed 100 Hz pulse repetition frequency. HIFU-induced cavitation bubbles are detected as hyperechoic regions in B-mode images. The temporal evolution of cavitation bubbles, generated by HIFU pulses with varying driving amplitude and pulse length, is analyzed by measuring the time-varying area of the hyperechoic region. The results show that: first, it is feasible to monitor HIFU-induced cavitation bubble activity in real-time using B-mode imaging; second, more cavitation bubbles can be generated with higher acoustic energy delivered; third, the hyperechoic region is observed to shrink gradually after ceasing the HIFU pulses, which indicates the dissolution of cavitation bubbles. This work will be helpful for developing an effective tool to realize real-time monitoring and quantitative evaluation of HIFU-induced cavitation bubble activity using a current commercialized B-mode machine.
Received: 27 October 2013      Published: 28 February 2014
PACS:  43.25.+y (Nonlinear acoustics)  
  43.80.+p (Bioacoustics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/034302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/034302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Jie
CHEN Chu-Yi
CHEN Gong
GUO Xia-Sheng
MA Yong
TU Juan
ZHANG Dong
[1] Chen T, Qiu Y Y, Fan T B and Zhang D 2013 Chin. Phys. Lett. 30 074302
[2] Zhang Z, Chen T and Zhang D 2013 Chin. Phys. Lett. 30 024302
[3] Zhang C B, Liu Z, Guo X S and Zhang D 2011 Chin. Phys. B 20 024301
[4] Qiu Y, Luo Y, Zhang Y, Cui W C, Zhang D, Wu J R, Zhang J F and Tu J 2010 J. Controlled Release 145 40
[5] ter Haar G R 2002 Eur. J. Radiol. 41 217
[6] Stride E P and Coussios C C 2010 Proc. Inst. Mech. Eng. 224 171
[7] Hwang J H, Brayman A A, Reidy M A, Matula T J, Kimmey M B and Crum L A 2005 Ultrasound Med. Biol. 31 553
[8] Tung Y S, Vlachos F, Choi J J, Deffieux T, Selert K and Konofagou E E 2010 Phys. Med. Biol. 55 6141
[9] Gy?ngy M and Coussios C C 2010 J. Acoust. Soc. Am. 128 EL175
[10] Jensen C R, Ritchie R W, Gyongy M et al 2012 Radiology 262 252
[11] Hynynen K1991 Ultrasound Med. Biol. 17 157
[12] Vaezy S, Shi X, Martin R W, Chi E, Nelson P I, Bailey M R and Crum L A 2001 Ultrasound Med. Biol. 27 33
[13] Rabkin B, Zderic V and Vaezy S 2005 Ultrasound Med. Biol. 31 947
[14] McCormick R 2002 Master Thesis (Boston: Boston University)
[15] Bush N L, Rivens I, and ter Haar G R 1993 Ultrasound Med. Biol. 19 789
[16] Bailey M R, Pishchalnikov Y A, Sapozhnikov O A, Cleveland O A, McAteer J A, Miller N A, Pishchalnikova I V, Connors B A, Crum L A and Evan A P 2005 Ultrasound Med. Biol. 31 1245
Related articles from Frontiers Journals
[1] Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 034302
[2] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 034302
[3] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 034302
[4] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 034302
[5] Hong-Hui Xue, Feng Shan, Xia-Sheng Guo, Juan Tu, Dong Zhang. Cavitation Bubble Collapse near a Curved Wall by the Multiple-Relaxation-Time Shan–Chen Lattice Boltzmann Model[J]. Chin. Phys. Lett., 2017, 34(8): 034302
[6] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 034302
[7] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 034302
[8] Ming-Liang Li, Ming-Xi Deng, Guang-Jian Gao, Han Chen, Yan-Xun Xiang. Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation[J]. Chin. Phys. Lett., 2017, 34(6): 034302
[9] Ming-Liang Li, Ming-Xi Deng, Wu-Jun Zhu, Guang-Jian Gao, Yan-Xun Xiang. Numerical Perspective of Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2016, 33(12): 034302
[10] Wei-Li Wang, Yu-Hao Wu, Xiao-Yu Lu, Bing-Bo Wei. A Videographic Study of Dynamic Phase Separation for Immiscible Solutions under Acoustic Levitation Condition[J]. Chin. Phys. Lett., 2016, 33(12): 034302
[11] Yu-Jiao Li, Wei-Jun Huang, Feng-Chao Ma, Rui Wang, Ming-Zhu Lu, Ming-Xi Wan. A Modified Monte Carlo Model of Speckle Tracking of Shear Wave Induced by Acoustic Radiation Force for Acousto-Optic Elasticity Imaging[J]. Chin. Phys. Lett., 2016, 33(11): 034302
[12] Wu-Jun Zhu, Ming-Xi Deng, Yan-Xun Xiang, Fu-Zhen Xuan, Chang-Jun Liu. Second Harmonic Generation of Lamb Wave in Numerical Perspective[J]. Chin. Phys. Lett., 2016, 33(10): 034302
[13] Zhe-Fan Peng, Wei-Jun Lin, Shi-Lei Liu, Chang Su, Hai-Lan Zhang, Xiu-Ming Wang. Phase Relation of Harmonics in Nonlinear Focused Ultrasound[J]. Chin. Phys. Lett., 2016, 33(08): 034302
[14] Ting-Bo Fan, Juan Tu, Lin-Jiao Luo, Xia-Sheng Guo, Pin-Tong Huang, Dong Zhang. The Relationship of Cavitation to the Negative Acoustic Pressure Amplitude in Ultrasonic Therapy[J]. Chin. Phys. Lett., 2016, 33(08): 034302
[15] DENG Ming-Xi, GAO Guang-Jian, LI Ming-Liang. Experimental Observation of Cumulative Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2015, 32(12): 034302
Viewed
Full text


Abstract