Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 034203    DOI: 10.1088/0256-307X/31/3/034203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Analysis and Measurement of the Displacement Sensor Based on an Up-tapered Mach–Zehnder Interferometer
WEN Xiao-Dong1, NING Ti-Gang1**, YOU Hai-Dong1,2, KANG Ze-Xin1, LI Jing1, LI Chao1, FENG Ting1, YU Shao-Wei1, JIAN Wei1
1Key Lab of All Optical Network and Advanced Telecommunication Network of Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044
2Science and Information College, Qingdao Agricultural University, Qingdao 266109
Cite this article:   
WEN Xiao-Dong, NING Ti-Gang, YOU Hai-Dong et al  2014 Chin. Phys. Lett. 31 034203
Download: PDF(705KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A displacement sensor based on an up-tapered Mach–Zehnder interferometer (MZI) is proposed and demonstrated experimentally. For this purpose, a fiber MZI is fabricated by using a commercial fusion splicer. Then the transmission spectra of the sensors with different middle fiber lengths are measured by bending the MZIs with different movements of the moving stage. The maximum sensitivity of 2.457 nm/mm is achieved while the shifting of the moving stage changes from 3 mm to 3.5 mm. Note that this kind of up-taper configuration is strong in strength, easy to fabricate and low in cost.
Received: 29 September 2013      Published: 28 February 2014
PACS:  42.81.Pa (Sensors, gyros)  
  42.81.Ht (Gradient-index (GRIN) fiber devices)  
  42.79.Ci (Filters, zone plates, and polarizers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/034203       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/034203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEN Xiao-Dong
NING Ti-Gang
YOU Hai-Dong
KANG Ze-Xin
LI Jing
LI Chao
FENG Ting
YU Shao-Wei
JIAN Wei
[1] Gauden D, Mechin D, Vaudry C, Yvernault P and Pureur D 2004 Opt. Commun. 231 213
[2] Bilodeau F, Johnson C D, Theriault S, Malo B, Albert J and Hill O K 1995 IEEE Photon. Technol. Lett. 7 388
[3] Ding J, Zhang A P, Shao L, Yan J and He S 2005 IEEE Photon. Technol. Lett. 17 1247
[4] Tian Z, Yam H S S, Barnes J, Bock W, Greig P, Fraser M J, Loock P H and Oleschuk D R 2008 IEEE Photon. Technol. Lett. 20 626
[5] Lu P, Men L, Sooley K and Chen Q 2009 Appl. Phys. Lett. 94 131110
[6] Duhem O, Henninot F J and Douay M 2000 Opt. Commun. 180 255
[7] Bethuys S, Lablonde L, Rivoallan L, Bayon F J, Brilland L and Delevaque E 1998 Electron. Lett. 34 1250
[8] Tian Z and Yam H S 2009 IEEE Photon. Technol. Lett. 21 161
[9] Guillermo S D, Alejandro M R and David M H 2013 J. Lightwave Technol. 31 761
[10] Luo S, Guo W, Yang X, Lü F and Lü C 2006 Acta Phys. Sin. 55 1889 (in Chinese)
[11] Li J, Zhang W, Gao S, Geng P, Xue X, Bai Z and Liang H 2013 IEEE Photon. Technol. Lett. 25 888
[12] Liu Y, Peng W, Liang Y, Zhang X, Zhou X and Pan L 2013 Opt. Commun. 300 194
[13] Wen X, Ning T, You H, Li J, Feng T, Pei L and Jian W 2013 Optoelectron. Lett. 9 325
Related articles from Frontiers Journals
[1] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 034203
[2] Xian-Ping Luo, Fei-Ru Wang, Chun-Lei Chen, Ling-Li Zhang, Lei Wang, Wei-Min Sun, Yong-Jun Liu. A Novel Mach–Zehnder Interferometer Based on Hybrid Liquid Crystal–Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2017, 34(12): 034203
[3] ZHANG Yun-Shan, QIAO Xue-Guang, SHAO Min, LIU Qin-Peng. In-Fiber Mach–Zehnder Interferometer Based on Waist-Enlarged Taper and Core-Mismatching for Strain Sensing[J]. Chin. Phys. Lett., 2015, 32(06): 034203
[4] LIU Ning-Liang, LIU Shu-Hui, LU Pei-Xiang. A Femtosecond-Laser-Induced Fiber Bragg Grating with Supermode Resonances for Sensing Applications[J]. Chin. Phys. Lett., 2014, 31(09): 034203
[5] XU Bin-Zong, LIU Jie-Tao, HU Hai-Feng, WANG Li-Na, WEI Xin, SONG Guo-Feng. A High Sensitivity Index Sensor Based on Magnetic Plasmon Resonance in Metallic Grating with Very Narrow Slits[J]. Chin. Phys. Lett., 2013, 30(4): 034203
[6] XU Ben, LI Jian-Qing, LI Yi, DONG Xin-Yong. A Thin-Core Fiber Modal Interferometer for Liquid-Level Sensing[J]. Chin. Phys. Lett., 2012, 29(10): 034203
[7] XU Ben, LI Yi, DONG Xin-Yong, JIN Shang-Zhong, ZHANG Zai-Xuan. Highly Sensitive Refractive Index Sensor Based on a Cladding-Etched Thin-Core Fiber Sandwiched between Two Single-Mode Fibers[J]. Chin. Phys. Lett., 2012, 29(9): 034203
[8] SHI Sheng-Hui, ZHOU Xiao-Jun, ZHANG Zhi-Yao, LAN Lan, YIN Cong, LIU Yong. Fiber-Optic Solution Concentration Sensor Based on a Pressure-Induced Long-Period Grating in a Composite Waveguide[J]. Chin. Phys. Lett., 2012, 29(9): 034203
[9] ZHANG Ji-Huang, LIU Ning-Liang, WANG Ying, JI Ling-Ling, LU Pei-Xiang. Dual-Peak Bragg Gratings Inscribed in an All-Solid Photonic Bandgap Fiber for Sensing Applications[J]. Chin. Phys. Lett., 2012, 29(7): 034203
[10] LIU Cheng-Xiang, ZHANG Li, WU Xu, RUAN Shuang-Chen. High-Stability Superfluorescent Fiber Source Based on an Er3+-Doped Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2012, 29(6): 034203
[11] HONG Ling-Fei**, ZHANG Chun-Xi, FENG Li-Shuang, YU Huai-Yong, LEI Ming. Frequency Modulation Induced by using the Linear Phase Modulation Method used in a Resonator Micro-optic Gyro[J]. Chin. Phys. Lett., 2012, 29(1): 034203
[12] LUO Tao, GU Zheng-Tian** . A New Type of Absorbance Sensors Based on Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2011, 28(5): 034203
[13] LI Zheng-Yong, WU Chong-Qing, SHANG Chao, YU Xiang-Zhi . Mueller-Matrix-Based Differential Rotation Method for Precise Measurement of Fiber Birefringence Vector[J]. Chin. Phys. Lett., 2010, 27(10): 034203
[14] LI Ming-Shan, YANG Chang-Xi. Laser-Induced Silver Nanoparticles Deposited on Optical Fiber Core for Surface-Enhanced Raman Scattering[J]. Chin. Phys. Lett., 2010, 27(4): 034203
[15] RAO Yun-Jiang, XU Bing, RAN Zeng-Ling, GONG Yuan. Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers[J]. Chin. Phys. Lett., 2010, 27(2): 034203
Viewed
Full text


Abstract