Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 034202    DOI: 10.1088/0256-307X/31/3/034202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Analysis and Simulation of Quantum Radar Cross Section
LIU Kang, XIAO Huai-Tie**, FAN Hong-Qi
Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, Changsha 410073
Cite this article:   
LIU Kang, XIAO Huai-Tie, FAN Hong-Qi 2014 Chin. Phys. Lett. 31 034202
Download: PDF(675KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We derive a modified analytical expression of a quantum radar cross section (QRCS). Subsequently, we present a comparison between the QRCS and a classical radar cross section (RCS) and analyze the factors that can affect the intensity of the peak and side lobes. Simulation results on a flat rectangular plate demonstrate that QRCS has a similar structure to that of RCS. The analysis of side-lobe structure can benefit the design of quantum stealth platforms as well as the research on quantum radars.
Received: 03 September 2013      Published: 28 February 2014
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  03.70.+k (Theory of quantized fields)  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/034202       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/034202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Kang
XIAO Huai-Tie
FAN Hong-Qi
[1] Lloyd S 2004 Science 306 1330
[2] Smith J F 2009 Proc. SPIE 7342 73420A
[3] Lanzagorta M 2011 Quantum Radar (San Rafael: Morgan & Claypool Publishers)
[4] Scully M O and Zubairy M S 1997 Quantum Optics (New York: Cambridge University Press)
[5] Greiner W and Reinhardt J 2008 Quantum Electrodynamics (Berlin: Springer)
[6] Greiner W and Reinhardt J 1996 Field Quantization (Berlin: Springer)
[7] Tan S H et al 2008 Phys. Rev. Lett. 101 253601
[8] Shapiro J H and Lloyd S 2009 New J. Phys. 11 063045
[9] Lopaeva E D et al 2013 Phys. Rev. Lett. 110 153603
[10] Guha S and Erkmen B I 2009 Phys. Rev. A 80 052310
[11] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[12] Xiao J J et al 2013 Chin. Phys. Lett. 30 100301
[13] Skolnik M L 2001 Radar Handbook (New York: McGraw Hill)
[14] Knott E F, Shaeffer J F and Tuley M T 2004 Radar Cross Section (Herndon: SciTech Publishing)
[15] Jenn D C 2005 Radar and Laser Cross Section Engineering (Alexander: AIAA Press)
[16] Lanzagorta M 2010 Proc. SPIE 7727 77270K
Related articles from Frontiers Journals
[1] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 034202
[2] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 034202
[3] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 034202
[4] Jin-Song Huang, Jia-Hao Zhang, Yan Wang, Zhong-Hui Xu. Designing Fano-Like Quantum Routing via Atomic Dipole-Dipole Interactions[J]. Chin. Phys. Lett., 2018, 35(3): 034202
[5] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2018, 35(1): 034202
[6] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 034202
[7] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 034202
[8] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 034202
[9] Yue-Chun Jiao, Xiao-Xuan Han, Zhi-Wei Yang, Jian-Ming Zhao, Suo-Tang Jia. Electromagnetically Induced Transparency in a Cold Gas with Strong Atomic Interactions[J]. Chin. Phys. Lett., 2016, 33(12): 034202
[10] Li-Yun Zhang, Hua-Jie Hu, Xin Yang, Ming-Tao Cao, Dong Wei, Pei Zhang, Hong Gao, Fu-Li Li. The Image Property in an EIT Information Transfer System[J]. Chin. Phys. Lett., 2016, 33(12): 034202
[11] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 034202
[12] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 034202
[13] R. Nasehi, S. H. Asadpour, H. Rahimpour Soleimani, M. Mahmoudi. Controlling the Goos–Hänchen Shift via Incoherent Pumping Field and Electron Tunneling in the Triple Coupled InGaAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2016, 33(01): 034202
[14] WANG Chun-Fang, WANG Feng, YANG Li-Ru. Electromagnetically Induced Self-Imaging in Four-Level Doppler Broadening Medium[J]. Chin. Phys. Lett., 2015, 32(09): 034202
[15] YANG Li-Ru, WANG Chun-Fang, ZHANG Da-Wei. Transverse Optical Properties of the Eu3+:Y2SiO5 Crystal in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(06): 034202
Viewed
Full text


Abstract