GENERAL |
|
|
|
|
Quantum Discord Behavior about Two-Qubit Heisenberg XYZ Model with Decoherence |
SONG Le, YANG Guo-Hui** |
School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004
|
|
Cite this article: |
SONG Le, YANG Guo-Hui 2014 Chin. Phys. Lett. 31 030304 |
|
|
Abstract We investigate the properties of quantum discord dynamics of a two-qubit Heisenberg XYZ system which is influenced by the environmental decoherence under an external nonuniform magnetic field. It shows that the influence of the parameters on the system heavily rely on the selection of the initial states. One point shows that the environmental decoherence cannot entirely destroy the quantum correlation, and properly controlling the parameters can inhibit the decoherence. Moreover, it presents that the inhomogeneous magnetic field cannot affect the steady quantum discord (QD), while the uniform magnetic field and the anisotropy coupling constant will change the steady QD. These investigations imply that one can obtain larger steady QD values by reasonably adjusting parameters on quantum correlation in solid state systems.
|
|
Received: 06 September 2013
Published: 28 February 2014
|
|
PACS: |
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
75.10.Pq
|
(Spin chain models)
|
|
|
|
|
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [2] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401 [3] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [4] Bell J S 1964 Physics 1 195 [5] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [6] Zurek W H 2003 Rev. Mod. Phys. 75 715 [7] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [8] Brennen G K, Deutsch I H and Jessen P S 2000 Phys. Rev. A 61 062309 [9] Mandel O, Greiner M, Widera A et al 2003 Nature 425 937 [10] Hagley E, Maitre X, Nogues G et al 1997 Phys. Rev. Lett. 79 1 [11] Rauschenbeutel A, Nogues G, Osnaghi S et al 2000 Science 288 2024 [12] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [13] Henderson L and Vedral V 2000 Phys. Rev. Lett. 84 2263 [14] Luo S 2008 Phys. Rev. A 77 022301 [15] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502 [16] Luo S and Fu S 2010 Phys. Rev. A 82 034302 [17] Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401 [18] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502 [19] Chen L, Chitambar E, Modi K and Vacanti G 2011 Phys. Rev. A 83 020101 [20] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502 [21] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501 [22] Datta A and Gharibian S 2009 Phys. Rev. A 79 042325 [23] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901 [24] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301 [25] Subrahmanyam V 2004 Phys. Rev. A 69 034304 [26] Wang X 2001 Phys. Rev. A 64 012313 [27] Loss D and Di Vincenzo D P 1998 Phys. Rev. A 57 120 Burkard G, Loss D and Di Vincenzo D P 1999 Phys. Rev. B 59 2070 [28] Kane B E 1998 Nature 393 133 [29] Vrijen R, Yablonovitch, Wang K, Jiang H W et al 2000 Phys. Rev. A 62 12306 [30] Sorensen A, Duan L M, Cirac J I and Zoller P 2001 Nature 409 63 [31] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302 [32] Carmichael H J 1999 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Plank Equantions (Berlin: Springer-Verlag) [33] Lindlad G 1976 Commun. Math. Phys. 48 199 [34] Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|