Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 020503    DOI: 10.1088/0256-307X/31/2/020503
GENERAL |
An Improved Local Weighted Linear Prediction Model for Chaotic Time Series
QU Jian-Ling1, WANG Xiao-Fei1**, QIAO Yu-Chuan2, GAO Feng1, DI Ya-Zhou1
1Department of Control, Naval Aeronautical Engineering Institute Qingdao Branch, Qingdao 266041
2Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
Cite this article:   
QU Jian-Ling, WANG Xiao-Fei, QIAO Yu-Chuan et al  2014 Chin. Phys. Lett. 31 020503
Download: PDF(685KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Previous research working on local prediction state with some unsuitable neighbor points (such as false points and pseudo-false neighbor points) are the main source of errors of local prediction and these unsuitable neighbors cannot be eliminated entirely. Therefore, an improved local weighted linear prediction model based on local integrated correlation, which can reduce the influence of the residual unsuitable neighbors, is proposed to predict chaotic time series in our study. Simulation results show that the performance of the improved model is superior to the other local prediction models in the prediction of chaotic time series without and with additive white Gaussian noise.
Received: 30 September 2013      Published: 28 February 2014
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/020503       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/020503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QU Jian-Ling
WANG Xiao-Fei
QIAO Yu-Chuan
GAO Feng
DI Ya-Zhou
[1] Loskutov E M, Molkov Y I and Mukhin D N 2008 Phys. Rev. E 77 066214
[2] Zhai L J, Zheng Y J and Ding S L 2012 Chin. Phys. Lett. 29 063301
[3] Zhang X D, Liu X D, Zheng Y and Liu C 2013 Chin. Phys. B 22 030509
[4] Zhang J S and Xiao X C 2005 Acta Phys. Sin. 54 2005 (in Chinese)
[5] Ren R, Xu J and Zhu S H 2006 Acta Phys. Sin. 55 555 (in Chinese)
[6] Meng Q F, Zhang Q and Mu W Y 2006 Acta Phys. Sin. 55 1666 (in Chinese)
[7] Samanta B 2011 Expert Syst. Appl. 38 11406
[8] Meng Q F, Peng Y H and Sun J 2007 Chin. Phys. 16 3220
[9] Gong X F and Lai C H 1999 Phys. Rev. E 60 5463
[10] Lim T C and Sadasivan P 2007 Phys. Lett. A 365 309
[11] Li H C and Zhang J S 2005 Chin. Phys. Lett. 22 2776
[12] Ferhatosmanoglu H, Tuncel E and Agrawa D 2006 Inf. Syst. 31 512
[13] Yang Y F, Wu Y F and Ren X M 2010 Acta Phys. Sin. 59 3778 (in Chinese)
[14] Wang W B, Zhang X D and Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese)
[15] Wang X Y, Han M and Wang Y N 2013 Acta Phys. Sin. 62 050504 (in Chinese)
[16] Feng C F and Wang Y H 2011 Chin. Phys. Lett. 28 120504
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 020503
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 020503
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 020503
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 020503
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 020503
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 020503
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 020503
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 020503
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 020503
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 020503
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 020503
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 020503
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 020503
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 020503
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 020503
Viewed
Full text


Abstract