GENERAL |
|
|
|
|
Berezinskii–Kosterlitz–Thouless Transition in a Two-Dimensional Random-Bond XY Model on a Square Lattice |
DENG Yi-Bo, GU Qiang** |
Department of Physics, University of Science and Technology Beijing, Beijing 100083
|
|
Cite this article: |
DENG Yi-Bo, GU Qiang 2014 Chin. Phys. Lett. 31 020504 |
|
|
Abstract We perform Monte Carlo simulations to study the two dimensional random-bond XY model on a square lattice. Two kinds of bond randomness with the coupling coefficient obeying the Gaussian or uniform distribution are discussed. It is shown that the two kinds of disorders lead to similar thermodynamic behaviors if their variances take the same value. This result implies that the variance can be chosen as a characteristic parameter to evaluate the strength of the randomness. In addition, the Berezinskii–Kosterlitz–Thouless transition temperature decreases as the variance increases and the transition can even be destroyed as long as the disorder is strong enough.
|
|
Received: 06 October 2013
Published: 28 February 2014
|
|
PACS: |
05.70.Fh
|
(Phase transitions: general studies)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
75.50.Lk
|
(Spin glasses and other random magnets)
|
|
05.70.Jk
|
(Critical point phenomena)
|
|
|
|
|
[1] Berezinskii V L 1971 Sov. Phys. JETP 32 493 [2] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181 [3] Kosterlitz J M 1974 J. Phys. C 7 1046 [4] Bramwell S T and Holdsworth P C W 1993 J. Phys.: Condens. Matter 5 L53 Bramwell S T and Holdsworth P C W 1994 Phys. Rev. B 49 8811 [5] Nelson D R and Kosterlitz J M 1977 Phys. Rev. Lett. 39 1201 [6] Bishop D J and Reppy J D 1978 Phys. Rev. Lett. 40 1727 [7] Resnick D J, Garland J C, Boyd J T, Shoemaker S and Newrock R S 1981 Phys. Rev. Lett. 47 1542 [8] Trombettoni A, Smerzi A and Sodano P 2005 New J. Phys. 7 57 [9] Rubinstein M, Shraiman S and Nelson D R 1983 Phys. Rev. B 27 1800 [10] Wu F Y 1982 Rev. Mod. Phys. 54 235 [11] Surungan T and Okabe Y 2005 Phys. Rev. B 71 184438 [12] Zhu H X and Yan S L 2006 Chin. Phys. 15 3026 [13] Korshunov S E 1992 Phys. Rev. B 46 6615 [14] Wu R P H, Lo V C and Huang H 2012 J. Appl. Phys. 112 063924 [15] Newman M E J and Barkema G T 1999 Monte Carlo Methods Stat. Phys. (Oxford: Oxford University Press) chap 1 pp 6–14 [16] Minnhagen P and Kim B J 2003 Phys. Rev. B 67 172509 [17] Xu J and Gu Q 2012 Phys. Rev. A 85 043608 [18] Wysin G M, Pereira A R, Marques I A, Leonel S A and Coura P Z 2005 Phys. Rev. B 72 094418 [19] Gupta R and Baillie C F 1992 Phys. Rev. B 45 2883 [20] Castro L M, Pires A S T and Plascak J A 2002 J. Magn. Magn. Mater. 248 62 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|