Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 126201    DOI: 10.1088/0256-307X/31/12/126201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Electrical Resistivity of Silane Multiply Shock-Compressed to 106 GPa
ZHONG Xiao-Feng1, LIU Fu-Sheng1**, CAI Ling-Cang2, XI Feng2, ZHANG Ming-Jian1, LIU Qi-Jun1, WANG Ya-Ping1, HAO Bin-Bin1
1Institute of High Temperature and High Pressure Physics, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031
2China Academy of Engneering Physics, Institute of Fluid Physics, Mianyang 621900
Cite this article:   
ZHONG Xiao-Feng, LIU Fu-Sheng, CAI Ling-Cang et al  2014 Chin. Phys. Lett. 31 126201
Download: PDF(626KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The liquid silane sample, prepared by liquifying pure silane gas at 88.5 K, is multiply shock-compressed to 106 GPa by means of a two-stage light-gas gun and a coolant target system. Electrical resistivity is measured for fluid silane during the period of multi-shock compression in the pressure range from 63.5 GPa to 106 GPa. It is shown that the electrical resistivity reduces to the order of 10?3–10?4 ohm?m after the second shock arrived, which is two orders higher than those of typical melt metals. Though the metallization transition could not be confirmed under the loading condition of our shock experiments, its resistivity drops sharply along with the pressure rise. The phenomenon might be caused by silane decomposed during the pressure loading, due to the fact that, above 100 GPa, we find that its resistivity is close to hydrogen under the same pressure.
Published: 12 January 2015
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  82.40.Fp (Shock wave initiated reactions, high-pressure chemistry)  
  85.40.Ls (Metallization, contacts, interconnects; device isolation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/126201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/126201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHONG Xiao-Feng
LIU Fu-Sheng
CAI Ling-Cang
XI Feng
ZHANG Ming-Jian
LIU Qi-Jun
WANG Ya-Ping
HAO Bin-Bin
[1] Wigner E and Huntingdon H B 1935 J. Chem. Phys. 3 764
[2] Lenosky T J, Kress J D, Collins L A et al 1997 Phys. Rev. B 55 R11907
[3] Weir S T, Mitchell A C and Nellis W J 1996 Phys. Rev. Lett. 76 1860
[4] Nellis W J 2000 Planet. Space Sci. 48 67
[5] Nellis W J, Weir S T and Mitchell A C 1999 Phys. Rev. B 59 3434
[6] Feng J, Grochala W, Jaroń T et al 2006 Phys. Rev. Lett. 96 017006
[7] Nellis W J, Hamilton D C and Mitchell A C 2001 J. Chem. Phys. 115 1015
[8] Pickard C J and Needs R J Phys 2006 Phys. Rev. Lett. 97 045504
[9] Yao Y, Tse J, Ma Y and Tanaka K 2007 Europhys. Lett. 78 37003
[10] Martinez-Canales, Miguel and Oganov, Artem R and Ma, Yanming and Yan, Yan and Lyakhov, Andriy O and Bergara Aito 2009 Phys. Rev. Lett. 102 087005
[11] Eremets M I, Trojan I A, Medvedev S A et al 2008 Science 319 1506
[12] Nellis W J, Moriarty J A, Mitchell A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C and Gathers G R 1988 Phys. Rev. Lett. 60 1414
[13] Ross M 1979 J. Chem. Phys. 71 1567
[14] Ross M and Ree F H 1980 J. Chem. Phys. 73 6146
[15] Hensel F and Edwards P 1996 Phys. World 9 43
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 126201
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 126201
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 126201
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 126201
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 126201
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 126201
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 126201
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 126201
[9] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 126201
[10] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 126201
[11] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 126201
[12] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 126201
[13] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 126201
[14] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 126201
[15] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 126201
Viewed
Full text


Abstract