Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 126601    DOI: 10.1088/0256-307X/31/12/126601
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
The Impact of Shallow-Trench-Isolation Mechanical Stress on the Hysteresis Effect of Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effects
LUO Jie-Xin1**, CHEN Jing1, CHAI Zhan1, L Kai2, HE Wei-Wei2, YANG Yan3, WANG Xi1
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2Graduate University of Chinese Academy of Sciences, Beijing 100049
3Departments of Physics, Soochow University, Suzhou 215006
Cite this article:   
LUO Jie-Xin, CHEN Jing, CHAI Zhan et al  2014 Chin. Phys. Lett. 31 126601
Download: PDF(868KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The impact of shallow trench isolation (STI) mechanical stress on the hysteresis effect in the output characteristics is measured in partially depleted (PD) silicon-on-insulator (SOI) metal-oxide-semiconductor field effect transistors (MOSFETs). We develop ID hysteresis, which is defined as the difference between ID versus VD forward sweep and reverse sweep. The fabricated devices show positive and negative peaks in ID hysteresis. The experimental results show that ID hysteresis declined as the STI mechanical stress increases. We also elaborate on the impact of STI mechanical stress on the ID hysteresis of PD SOI n-type MOSFETs.
Published: 12 January 2015
PACS:  66.70.Df (Metals, alloys, and semiconductors)  
  68.35.bg (Semiconductors)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/126601       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/126601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Jie-Xin
CHEN Jing
CHAI Zhan
L Kai
HE Wei-Wei
YANG Yan
WANG Xi
[1] Colinge J P 2004 Silicon-On-Insulator: Materials to VLSI (Boston: Kluwer Academic Publishers)
[2] Miyamoto M, Ohta H, Kumagai Y, Sonobe Y, Ishibashi K and Tainaka Y 2004 IEEE Trans. Electron Devices 51 440
[3] Damiano J and Franzon P D 2004 Proc. IEEE Int. SOI Conf. p 115
[4] Chen S S, Lu S H and Tang T H 2004 IEEE Trans. Electron Devices 51 708
[5] Lee H, Lee J H, Shin H, Park Y J and Min H S 2002 IEEE Trans. Electron Devices 49 605
[6] Yu W J, Zhang B, Liu C, Xue Z Y, Chen M and Zhao Q T 2014 Chin. Phys. Lett. 31 016101
[7] Morifuji E, Kumamori T, Muta M, Suzuki K, Krishnan M S, Brozek T, Li X, Asano W, Nishigori M, Yanagiya N, Yamada S, Miyamoto K, Noguchi T and Kakumu M 2002 Proc. Symp. VLSI Technol. p 218
[8] Chung S S, Yeh C H, Feng H J, Lai C S, Yang J J, Chen C C, Jin Y, Chen S C and Liang M S 2006 IEEE Trans. Device Mater. Reliab. 6 95
[9] Ha D, Cho C, Shin D, Koh G H, Chung T Y and Kim K 1999 IEEE Trans. Electron Devices 46 940
[10] Gallon C, Reimbold G, Ghibaudo G, Bianchi R A, Gwoziecki R, Orain S, Robilliart E, Raynaud C and Dansas H 2004 IEEE Trans. Electron Devices 51 1254
[11] Luo J X, Chen J, Zhou J H, Wu Q Q, Chai Z, Yu T and Wang X 2012 Chin. Phys. B 21 056602
[12] Luo J X, Chen J, Zhuo J H, Wu Q, Chai Z and Wang X 2012 IEEE Trans. Device Mater. Reliab. 12 63
[13] Luo J X, Chen J, Wu Q Q, Chai Z, Zhou J H, Yu T, Dong Y J, Li L, Liu W, Qiu C and Wang X 2012 IEEE Trans. Electron Devices 59 101
[14] Huang H X, Bi D W, Ning B X, Zhang Y W, Zhang Z X and Zou S C 2013 IEEE Trans. Nucl. Sci. 60 1354
[15] Mercha A, Rafi J M, Simoen E, Augendre E and Claeys C 2003 IEEE Trans. Electron Devices 50 1675
[16] Dai C H, Chang T C, Chu A K, Kuo Y J, Chen S C, Tsai C C, Ho S H, Lo W H, Xia G R, Cheng O and Huang C T 2010 IEEE Electron Device Lett. 31 540
[17] Rindner W and Braun I 1963 J. Appl. Phys. 34 1958
Related articles from Frontiers Journals
[1] Wang Li , Tian Xu , Zheng Ma , Abubakar-Yakubu Haruna, Qing-Hui Jiang , Yu-Bo Luo, and Jun-You Yang. Simultaneous Optimization of Power Factor and Thermal Conductivity towards High-Performance InSb-Based Thermoelectric Materials[J]. Chin. Phys. Lett., 2021, 38(9): 126601
[2] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou. Electron Transport Behavior of Multiferroic Perovskite BiMnO$_{3}$ Prepared by Co-Precipitation Method[J]. Chin. Phys. Lett., 2018, 35(2): 126601
[3] V. Dalouji, S. M. Elahi, A. Ghaderi, S. Solaymani. Porosity Evaluation and the Power Spectral Densities Analyses of Carbon–Nickel Composite Films Annealed at Different Temperatures[J]. Chin. Phys. Lett., 2016, 33(08): 126601
[4] Quan-Xi Yan, Shu-Fang Zhang, Xing-Ming Long, Hai-Jun Luo, Fang Wu, Liang Fang, Da-Peng Wei, Mei-Yong Liao. Numerical Simulation on Thermal-Electrical Characteristics and Electrode Patterns of GaN LEDs with Graphene/NiO$_x$ Hybrid Electrode[J]. Chin. Phys. Lett., 2016, 33(07): 126601
[5] V. Dalouji, S. M. Elahi, A. Ghaderi, S. Solaymani. Influence of Annealing Temperature on Berthelot-Type Hopping Conduction Mechanism in Carbon-Nickel Composite Films[J]. Chin. Phys. Lett., 2016, 33(05): 126601
[6] XUE Sheng-Jie, FANG Liang, LONG Xing-Ming, LU Yi, WU Fang, LI Wan-Jun, ZUO Jia-Qi, ZHANG Shu-Fang. Influence of ITO, Graphene Thickness and Electrodes Buried Depth on LED Thermal-Electrical Characteristics Using Numerical Simulation[J]. Chin. Phys. Lett., 2014, 31(2): 126601
Viewed
Full text


Abstract