Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 117301    DOI: 10.1088/0256-307X/31/11/117301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effects of Oxygen Vacancy on Optical and Electrical Properties of ZnO Bulks and Nanowires
YU Xiao-Xia1, ZHENG Hong-Mei1, FANG Xiao-Yong1**, JIN Hai-Bo2, CAO Mao-Sheng2**
1School of Science, Yanshan University, Qinhuangdao 066004
2School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081
Cite this article:   
YU Xiao-Xia, ZHENG Hong-Mei, FANG Xiao-Yong et al  2014 Chin. Phys. Lett. 31 117301
Download: PDF(623KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the generalized gradient approximation (GGA) in density functional theory (DFT) and using the first-principle plane wave ultrasoft pseudopotential method, we construct and optimize the structures of intrinsic and oxygen vacancy (VO) ZnO bulks and nanowires (NWs) in the Castep module. Moreover, the calculation of band structures and the optical properties are carried out. The calculated results exhibit that the oxygen vacancy exerts a more significant influence on the electronic structures of the ZnO bulks instead of the NWs. What is more, the influences of the VO on the optical properties are mainly embodied in the ultraviolet region, and the main optical parameters of ZnO bulks and NWs with VO are anisotropic.
Published: 28 November 2014
PACS:  73.61.Ga (II-VI semiconductors)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/117301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/117301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Xiao-Xia
ZHENG Hong-Mei
FANG Xiao-Yong
JIN Hai-Bo
CAO Mao-Sheng
[1] Ran C J, Yang H L, Wang Y K, Farooq M H, Zhou L G, Xu X G and Yong J 2013 Chin. Phys. B 22 067503
[2] Wang L N, Fang X Y, Hou Z L, Yuan J and Cao M S 2011 Chin. Phys. Lett. 28 027101
[3] Paudel T R and Lambrecht W R L 2008 Phys. Rev. B 77 205202
[4] Li L J, Zhao M W, Ji Y J, Li F and Liu X D 2010 Chin. Phys. Lett. 27 086105
[5] Weng Z Z, Zhang J M, Huang Z G and Lin W X 2011 Chin. Phys. B 20 027103
[6] He X B, Yang T Z, Yang T Z, Zhang, C D, Guo H M, Shi D X, Shen C M and Gao H J 2008 Chin. Phys. B 17 3444
[7] Minami T, Sato H, Nanto H and Takata S 1985 Jpn. J. Appl. Phys. 24 L781
[8] Lee E C, Kim Y S, Jin Y G and Chang K J 2001 Phys. Rev. B 64 085120
[9] Boukos N, Chandrinou C and Travlos A 2012 Thin Solid Films 520 4654
[10] G Srinet, R Kumar and V Sajal 2013 Ceram. Int. 39 7557
[11] Wang Q, Sun Q, Chen G, Kawazoe G and Jena P 2008 Phys. Rev. B 77 205411
[12] Xing G Z, Wang D D, Yi J B, Yang L L, Gao M, He M, Yang J H, Ding J, Sum T C and Wu T 2010 Appl. Phys. Lett. 96 112511
[13] Tseng Y K, Lin I N, Liu K S, Lin T S and Chen I C 2003 J. Mater. Res. 18 714
[14] Kuo T J, Lin C N, Kuo C L and Huang M H 2007 Chem. Mater. 19 5143
[15] Zhang S B, Wei S H and Zunger A 2001 Phys. Rev. B 63 075205
[16] Wan Q, Song Z T, Liu W L, Lin C L and Wang T H 2004 Nanotechnology 15 559
[17] Lu H Y, Chu S Y and Cheng S H 2005 J. Cryst. Growth 274 506
[18] Kohan A F, Ceder G and Morgan D 2000 Phys. Rev. B 61 15019
[19] Leung Y H, Chen X Y, Ng A M C, Guo M Y, Liu F Z, Djuri?i? A B, Chan W K, Shi X Q and Van Hove M A 2013 Appl. Surf. Sci. 271 202
[20] Wang D D, Yang J H, Xing G Z, Yang L L, Lang J H, Gao M, Yao B and Wu T 2009 J. Lumin. 129 996
[21] Li H H, Liang C L, Zhong K, Liu M, Hope G A, Tong Y and Liu P 2009 Nanoscale Res. Lett. 4 1183
[22] Jung M, Kim S and Ju S 2011 Opt. Mater. 33 280
[23] Fang D Q and Zhang R Q 2011 J. Appl. Phys. 109 044306
[24] Zhao C X, Huang K, Deng S Z, Xu N S and Chen J 2013 Appl. Surf. Sci. 270 82
Related articles from Frontiers Journals
[1] Guo-Ping Qin, Hong Zhang, Hai-Bo Ruan, Jiang Wang, Dong Wang, Chun-Yang Kong. Effect of Post-Annealing on Structural and Electrical Properties of ZnO:In Films[J]. Chin. Phys. Lett., 2019, 36(4): 117301
[2] ZHU Yuan-Yuan, WANG Rong-Juan, WANG Li, LIU Yong, XIONG Rui, SHI Jing, AN Li-Heng, SUN Duo-Hua. Transport Behavior in Spinel Oxide MgTi2O4[J]. Chin. Phys. Lett., 2014, 31(09): 117301
[3] ZHANG Bin, LI Min, WANG Jian-Zhong, SHI Li-Qun. P-type ZnO:N Films Prepared by Thermal Oxidation of Zn3N2[J]. Chin. Phys. Lett., 2013, 30(2): 117301
[4] KIM Nam-Hoon, MYUNG Kuk Do, LEE Woo-Sun. Laser-Induced Indium-Diffusion into Cadmium Sulfide Thin Film for Solar Cell Applications[J]. Chin. Phys. Lett., 2012, 29(12): 117301
[5] ZHANG Yan-Fei, ZHAO Su-Ling, XU Zheng, KONG Chao. The Formation of Exciplex and Improved Turn-on Voltage in a Hybrid Organic-Inorganic Light-Emitting Diode[J]. Chin. Phys. Lett., 2012, 29(11): 117301
[6] SHI Wei, TAI Qiang, XIA Xian-Hai, YI Ming-Dong, XIE Ling-Hai, FAN Qu-Li, WANG Lian-Hui, WEI Ang, and HUANG Wei. Unipolar Resistive Switching Effects Based on Al/ZnO/P++-Si Diodes for Nonvolatile Memory Applications[J]. Chin. Phys. Lett., 2012, 29(8): 117301
[7] GAO Jun-Ning,JIE Wan-Qi**,YUAN Yan-Yan,ZHA Gang-Qiang,XU Ling-Yan,WU Heng,WANG Ya-Bin,YU Hui,ZHU Jun-Fa. In-Situ SRPES Study on the Band Alignment of (0001)CdS/CdTe Heterojunction[J]. Chin. Phys. Lett., 2012, 29(5): 117301
[8] LI Shao-Juan, HE Xin, HAN De-Dong, SUN Lei, WANG Yi, HAN Ru-Qi, CHAN Man-Sun, ZHANG Sheng-Dong, **. Reactive Radiofrequency Sputtering-Deposited Nanocrystalline ZnO Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(1): 117301
[9] MA Feng, WANG Shi-Rong**, LI Xiang-Gao, YAN Dong-Hang . Improved Performance of Fluorinated Copper Phthalocyanine Thin Film Transistors Using Para-hexaphenyl as the Inducing Layer[J]. Chin. Phys. Lett., 2011, 28(11): 117301
[10] YI Ming-Dong, **, XIE Ling-Hai, LIU Yu-Yu, DAI Yan-Feng, HUANG Jin-Ying . Electrical Characteristics of High-Performance ZnO Field-Effect Transistors Prepared by Ultrasonic Spray Pyrolysis Technique[J]. Chin. Phys. Lett., 2011, 28(1): 117301
[11] SUN Li-Jie, HE Dong-Kai, XU Xiao-Qiu, ZHONG Ze, WU Xiao-Peng, LIN Bi-Xia, FU Zhu-Xi . Effect of High Temperature Annealing on Conduction-Type ZnO Films Prepared by Direct-Current Magnetron Sputtering[J]. Chin. Phys. Lett., 2010, 27(12): 117301
[12] MA Jing-Jing, JIN Ke-Xin, LUO Bing-Cheng, FAN Fei, XING Hui, ZHOU Chao-Chao, CHEN Chang-Le. Rectifying and Photovoltage Properties of ZnO:Al/p-Si Heterojunction[J]. Chin. Phys. Lett., 2010, 27(10): 117301
[13] ZHANG Yin-Zhu, LU Jian-Guo, YE Zhi-Zhen, HE Hai-Ping, CHEN Lan-Lan, ZHAO Bing-Hui. Identification of Acceptor States in Li-N Dual-Doped p-Type ZnO Thin Films[J]. Chin. Phys. Lett., 2009, 26(4): 117301
[14] KONG Chun-Yang, QIN Guo-Ping, RUAN Hai-Bo, NAN Mao, ZHU Ren-Jiang, DAI Te-Li. Effect of Post-Annealing on Microstructural and Electrical Properties of N+ Ion-Implanted into ZnO:In Films[J]. Chin. Phys. Lett., 2008, 25(3): 117301
[15] ZHANG Xin-Yu, CHEN Zhou-Wen, QI Yan-Peng, FENG Yan, ZHAO Liang, QI Li, MA Ming-Zhen, LIU Ri-Ping, WANG Wen-Kui. Ab Initio Comparative Study of Zincblende and Wurtzite ZnO[J]. Chin. Phys. Lett., 2007, 24(4): 117301
Viewed
Full text


Abstract