CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effects of Oxygen Vacancy on Optical and Electrical Properties of ZnO Bulks and Nanowires |
YU Xiao-Xia1, ZHENG Hong-Mei1, FANG Xiao-Yong1**, JIN Hai-Bo2, CAO Mao-Sheng2** |
1School of Science, Yanshan University, Qinhuangdao 066004 2School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081
|
|
Cite this article: |
YU Xiao-Xia, ZHENG Hong-Mei, FANG Xiao-Yong et al 2014 Chin. Phys. Lett. 31 117301 |
|
|
Abstract Based on the generalized gradient approximation (GGA) in density functional theory (DFT) and using the first-principle plane wave ultrasoft pseudopotential method, we construct and optimize the structures of intrinsic and oxygen vacancy (VO) ZnO bulks and nanowires (NWs) in the Castep module. Moreover, the calculation of band structures and the optical properties are carried out. The calculated results exhibit that the oxygen vacancy exerts a more significant influence on the electronic structures of the ZnO bulks instead of the NWs. What is more, the influences of the VO on the optical properties are mainly embodied in the ultraviolet region, and the main optical parameters of ZnO bulks and NWs with VO are anisotropic.
|
|
Published: 28 November 2014
|
|
PACS: |
73.61.Ga
|
(II-VI semiconductors)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
|
|
|
[1] Ran C J, Yang H L, Wang Y K, Farooq M H, Zhou L G, Xu X G and Yong J 2013 Chin. Phys. B 22 067503 [2] Wang L N, Fang X Y, Hou Z L, Yuan J and Cao M S 2011 Chin. Phys. Lett. 28 027101 [3] Paudel T R and Lambrecht W R L 2008 Phys. Rev. B 77 205202 [4] Li L J, Zhao M W, Ji Y J, Li F and Liu X D 2010 Chin. Phys. Lett. 27 086105 [5] Weng Z Z, Zhang J M, Huang Z G and Lin W X 2011 Chin. Phys. B 20 027103 [6] He X B, Yang T Z, Yang T Z, Zhang, C D, Guo H M, Shi D X, Shen C M and Gao H J 2008 Chin. Phys. B 17 3444 [7] Minami T, Sato H, Nanto H and Takata S 1985 Jpn. J. Appl. Phys. 24 L781 [8] Lee E C, Kim Y S, Jin Y G and Chang K J 2001 Phys. Rev. B 64 085120 [9] Boukos N, Chandrinou C and Travlos A 2012 Thin Solid Films 520 4654 [10] G Srinet, R Kumar and V Sajal 2013 Ceram. Int. 39 7557 [11] Wang Q, Sun Q, Chen G, Kawazoe G and Jena P 2008 Phys. Rev. B 77 205411 [12] Xing G Z, Wang D D, Yi J B, Yang L L, Gao M, He M, Yang J H, Ding J, Sum T C and Wu T 2010 Appl. Phys. Lett. 96 112511 [13] Tseng Y K, Lin I N, Liu K S, Lin T S and Chen I C 2003 J. Mater. Res. 18 714 [14] Kuo T J, Lin C N, Kuo C L and Huang M H 2007 Chem. Mater. 19 5143 [15] Zhang S B, Wei S H and Zunger A 2001 Phys. Rev. B 63 075205 [16] Wan Q, Song Z T, Liu W L, Lin C L and Wang T H 2004 Nanotechnology 15 559 [17] Lu H Y, Chu S Y and Cheng S H 2005 J. Cryst. Growth 274 506 [18] Kohan A F, Ceder G and Morgan D 2000 Phys. Rev. B 61 15019 [19] Leung Y H, Chen X Y, Ng A M C, Guo M Y, Liu F Z, Djuri?i? A B, Chan W K, Shi X Q and Van Hove M A 2013 Appl. Surf. Sci. 271 202 [20] Wang D D, Yang J H, Xing G Z, Yang L L, Lang J H, Gao M, Yao B and Wu T 2009 J. Lumin. 129 996 [21] Li H H, Liang C L, Zhong K, Liu M, Hope G A, Tong Y and Liu P 2009 Nanoscale Res. Lett. 4 1183 [22] Jung M, Kim S and Ju S 2011 Opt. Mater. 33 280 [23] Fang D Q and Zhang R Q 2011 J. Appl. Phys. 109 044306 [24] Zhao C X, Huang K, Deng S Z, Xu N S and Chen J 2013 Appl. Surf. Sci. 270 82 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|