Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 117401    DOI: 10.1088/0256-307X/31/11/117401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Energy Gap and Electron Effective Mass in Chlorine Halide Superconductor at High Pressure
R. Szczęśniak1, D. Szczęśniak2**
1Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, Czestochowa 42-200, Poland
2Institute of Physics, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, Czestochowa 42-200, Poland
Cite this article:   
R. Szcz??niak, D. Szcz??niak 2014 Chin. Phys. Lett. 31 117401
Download: PDF(805KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dependences of the order parameter (Δ) and the electron effective mass (me?) on the temperature for the chlorine halide superconductor are determined in the present work. The high values of the pressure (p1=320 GPa and p2=360 GPa), for which the critical temperature is equal to [TC]p1=30.6 K and [TC]p2=41.5 K, are taken into consideration. It is found that the dependence of the order parameter on the temperature deviates from the predictions of the classical Bardeen–Cooper–Schrieffer theory, due to the existence of the significant strong-coupling and retardation effects. The values of the order parameter, for the temperature close to zero Kelvin, are equal to [Δ(0)]p1=4.89 meV and [Δ(0)]p2=6.82 meV. The obtained results allowed next to calculate the dimensionless ratio RΔ≡2Δ(0)/kBTC, which is equal to 3.71 and 3.81 in respect to p1 and p2. In the last step, it is proven that the electron effective mass is weakly dependent on the temperature in the area of the existence of the superconducting state and reaches its maximum at the critical temperature. For the considered values of the pressure, we obtain [me?]p1max=1.69me and [me?]p2max=1.78me, where the symbol me denotes the electron band mass.

Published: 28 November 2014
PACS:  74.20.Fg (BCS theory and its development)  
  74.25.Bt (Thermodynamic properties)  
  74.62.Fj (Effects of pressure)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/117401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/117401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
R. Szcz??niak
D. Szcz??niak

[1] Duan D, Tian F, He Z, Meng X, Wang L, Chen C, Zhao X, Liu B and Cui T 2010 J. Chem. Phys. 133 074509
[2] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[3] Eliashberg G M 1960 Sov. Phys. JETP 11 696
[4] Szcz? ?niak R 2006 Acta Phys. Pol. A 109 179
[5] Marsiglio F, Schossmann M and Carbotte J P 1988 Phys. Rev. B 37 4965
[6] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[7] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[8] Carbotte J P 1990 Rev. Mod. Phys. 62 1027
[9] Carbotte J P and Marsiglio F 2003 The Physics of Superconductors (Berlin: Springer) vol 1 p 223
[10] Szcz? ?niak R and Drzazga E A 2013 Solid State Sci. 19 167
[11] Szcz? ?niak R and Durajski A P 2013 Solid State Sci. 25 45
[12] Szcz? ?niak R and Durajski A P 2014 Supercond. Sci. Technol. 27 015003
[13] Varelogiannis G 1997 Z. Phys. B 104 411

Related articles from Frontiers Journals
[1] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 117401
[2] Jiang Hong Man, Ze Cheng. Cooper Molecules: Second Pairing of Cooper Pairs in Gapless Superconductor CeCoIn$_5$[J]. Chin. Phys. Lett., 2019, 36(10): 117401
[3] CAO Yu-Fei, CAI Kai-Ming, LI Li-Jun, LU Wen-Jian, SUN Yu-Ping, WANG Kai-You. Transport and Capacitance Properties of Charge Density Wave in Few-Layer 2H–TaS2 Devices[J]. Chin. Phys. Lett., 2014, 31(07): 117401
[4] HAN Qiang, LIU Jia, ZHANG Dan-Bo, WANG Zi-Dan. An Exotic Type of Fulde–Ferrel–Larkin–Ovchinnikov States in Spin-Orbit Coupled Condensates[J]. Chin. Phys. Lett., 2014, 31(05): 117401
[5] FAN Wei, WANG Jiang-Long, ZOU Liang-Jian, ZENG Zhi. Non-Adiabatic Effects of Superconductor Silane under High Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 117401
[6] FAN Wei. Anti-Correlation between Energy-Gap and Phonon Energy for Cuprate Bi2212 Superconductor[J]. Chin. Phys. Lett., 2008, 25(6): 117401
[7] LIU Su, SHEN Rui, ZHENG Zhi-Ming, XING Ding-Yu. Incompatibility of d-Wave Pairing and Ferromagnetism in a Uniform System[J]. Chin. Phys. Lett., 2003, 20(2): 117401
[8] YIN Dao-Le, YANG Fan, QI Zhi, HAN Ru-Shan. Electron-Phonon Coupling in Anion Metallic Solids and Superconducting MgB2[J]. Chin. Phys. Lett., 2002, 19(8): 117401
[9] CHEN Zhi-Qian, ZHENG Ren-Rong,. Statistic Ensemble Theory of Small Superconducting Grains[J]. Chin. Phys. Lett., 2001, 18(4): 117401
[10] CHEN Zhi-Qian, ZHENG Ren-Rong,. Breakdown of Superconductivity in Small Metallic Grains[J]. Chin. Phys. Lett., 2000, 17(10): 117401
[11] CHEN Xiao-jia, GONG Chang-de. Pressure-Induced Charge Transfer and Pressure Dependence of the Superconducting Transition Temperature in HgBa2CuO4+δ[J]. Chin. Phys. Lett., 1998, 15(9): 117401
[12] SHI Da-ning. Van Hove Scenario in Two-Layer BCS Model[J]. Chin. Phys. Lett., 1996, 13(1): 117401
[13] LIU Fusui. HIGH Tc SUPERCONDUCTIVITY ENHANCED BY ANTIFERROMAGNETISM[J]. Chin. Phys. Lett., 1989, 6(10): 117401
[14] D. Szczęśniak, R. Szczęśniak. Thermodynamics of the CaLi2 Superconductor in the Vicinity of Structural Phase Transition[J]. Chin. Phys. Lett., 2014, 31(08): 117401
Viewed
Full text


Abstract