Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 112501    DOI: 10.1088/0256-307X/31/11/112501
NUCLEAR PHYSICS |
Proximity Approach to Study the Fusion Barriers for Proton and Helium Induced Reactions
Raj Kumari**, Sumandeep Kaur
Department of Physics, Panjab University, Chandigarh 160 014, India
Cite this article:   
Raj Kumari, Sumandeep Kaur 2014 Chin. Phys. Lett. 31 112501
Download: PDF(801KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using various proximity potentials, the fusion barrier heights and positions are calculated for proton and helium induced reactions with targets in the mass range 51≤A ≤130 and 12≤A≤233, respectively. The calculated fusion barriers are parameterized by using the relations RBPar=aX1+b and VBPar=cX2, where X1 and X2 are A21/3 and Z1Z2/RBPar, respectively. The values of the constants a, b and c are different for different versions of proximity potentials. We find that the parameterized forms derived by using Proximity 1977 yield values closer to the empirical data in proton as well as helium induced reactions and can be used further to estimate directly the barrier parameters for the fusion reactions of proton and helium with any target.
Published: 28 November 2014
PACS:  25.60.Pj (Fusion reactions)  
  25.70.Jj (Fusion and fusion-fission reactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/112501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/112501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Raj Kumari
Sumandeep Kaur
[1] Hofmann S 2009 Russ. Chem. Rev. 78 1123
[2] Huang S W et al 1993 Phys. Lett. B 298 41
[3] Puri R K and Gupta R K 1991 J. Phys. G 17 1933
[4] Dutt I and Puri R K 2010 Phys. Rev. C 81 044615
[5] Kumari R 2013 Nucl. Phys. A 917 85
[6] Vermani Y K and Puri R K 2009 Europhys. Lett. 85 62001
[7] Li B A et al 1996 Phys. Rev. Lett. 76 4492
[8] Miao H, Gao C and Zhuang P 2007 Phys. Rev. C 76 014907
[9] Mallick G S et al 2006 Phys. Rev. C 73 054606
[10] Satchler G R and Love W G 1979 Phys. Rep. 55 183
[11] Skyrme T H R 1956 Philos. Mag. 1 1043
[12] Blocki J et al 1977 Ann. Phys. (N. Y.) 105 427
[13] Guo C L, Zhang G L and Le X Y 2013 Nucl. Phys. A 897 54
[14] Cheng Y J, Long Z G and Yang P D 2014 Chin. Phys. C 38 034101
[15] Qu W W, Zhang G L and Le X Y 2012 Acta Phys. Sin. 61 152501 (in Chinese)
[16] Kumar R and Sharma M K 2012 Phys. Rev. C 85 054612
[17] Dutt I and Bansal R 2010 Chin. Phys. Lett. 27 112402
[18] Tanihata I et al 1985 Phys. Lett. B 160 380
[19] Vaz L C and Alexander J M 1984 Z. Phys. A: At. Nucl. 318 213
Related articles from Frontiers Journals
[1] M. Golshanian, O. N. Ghodsi, R. Gharaei, V. Zanganeh. The Analysis of the Fusion Reaction of Two Colliding Nuclei Using the FCC Lattice Model[J]. Chin. Phys. Lett., 2013, 30(10): 112501
[2] M. Salehi, O. N. Ghodsi. The Influence of the Dependence of Surface Energy Coefficient to Temperature in the Proximity Model[J]. Chin. Phys. Lett., 2013, 30(4): 112501
[3] JIANG Song-Sheng**, HE Ming, WU Shao-Yong, QI Bu-Jia. Anomalously High Isotope Ratio 3He/4He and Tritium in Deuterium-Loaded Metal: Evidence for Nuclear Reaction in Metal Hydrides at Low Temperature[J]. Chin. Phys. Lett., 2012, 29(1): 112501
[4] Ishwar Dutt**, Rajni Bansal . A Modified Proximity Approach in the Fusion of Heavy Ions[J]. Chin. Phys. Lett., 2010, 27(11): 112501
[5] Ishwar Dutt**, Narinder K. Dhiman. Study of Fusion Dynamics Using Skyrme Energy Density Formalism with Different Surface Corrections[J]. Chin. Phys. Lett., 2010, 27(11): 112501
[6] HUANG Ming-Hui, GAN Zai-Guo, FENG Zhao-Qing, ZHOU Xiao-Hong, LI Jun-Qing,. Neutron and Proton Diffusion in Fusion Reactions for the Synthesis of Superheavy Nuclei[J]. Chin. Phys. Lett., 2008, 25(4): 112501
[7] YUE Chong-Xing, ZHANG Nan, DING Li, ZHU Shi-Hai, WANG Li-Hong. Associated Production of Scalars and New Gauge Bosons from a Little Higgs Model at the LHC[J]. Chin. Phys. Lett., 2008, 25(1): 112501
[8] CAO Ji-Guang, YANG Ding, MA Zhong-Yu, Nguyen Van Giai. Boundary Conditions of Wigner-Seitz Cell in Inner Crust of Neutron Stars with Relativistic Mean Field Approach[J]. Chin. Phys. Lett., 2008, 25(1): 112501
[9] HUANG Yong-Sheng, WANG Nai-Yan, DUAN Xiao-Jiao, LAN Xiao-Fei, TAN Zhi-Xin, TANG Xiu-Zhang, HE Ye-Xi. Neutron Generation and Kinetic Energy of Expanding Laser Plasmas[J]. Chin. Phys. Lett., 2007, 24(10): 112501
[10] FENG Zhao-Qing, JIN Gen-Ming, HUANG Ming-Hui, GAN Zai-Guo, WANG Nan, LI Jun-Qing,. Possible Way to Synthesize Superheavy Element Z =117[J]. Chin. Phys. Lett., 2007, 24(9): 112501
[11] ZHOU Shu-Hua, ZHOU Jing, FU Yuan-Yong, LI Cheng-Bo, LIU Zhi-Yi, MENG Qiu-Ying. Measurement of Branching Ratio of Deuteron Induced Reactions on 2H at 20keV[J]. Chin. Phys. Lett., 2006, 23(10): 112501
[12] WEI Liang, LIU Yu-Xin, ,. Shape Evolution of the Compound Nucleus in the Superheavy Element Synthesis Reaction via the BUU Model[J]. Chin. Phys. Lett., 2005, 22(9): 112501
[13] FENG Zhao-Qing, , JIN Gen-Ming, FU Fen, ZHANG Feng-Shou, , JIA Fei, HUANG Xi, , HU Rong-Jiang, LI Wen-Fei, LI Jun-Qing,. Entrance Channel Dependence of Production Cross Sections of Superheavy Nuclei in Cold Fusion Reactions[J]. Chin. Phys. Lett., 2005, 22(4): 112501
[14] CHEN Bao-Qiu, MA Zhong-Yu, ZHU Zhi-Yuan, SONG Hong-Qiu, ZHAO Yao-Lin. Deformed Potential Energy of Super Heavy Element Z=120 in a Generalized Liquid Drop Model[J]. Chin. Phys. Lett., 2005, 22(2): 112501
[15] AN Wei-Ke, QIU Xi-Jun, ZHU Zhi-Yuan. Nuclear Fusion Induced by Coulomb-Hydrodynamic Explosion of Deuterium Clusters in Intense Laser Pulses[J]. Chin. Phys. Lett., 2004, 21(5): 112501
Viewed
Full text


Abstract