CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
High Performance Long Wavelength Superlattice Photodetectors Based on Be Doped Absorber Region |
ZHOU Yi, CHEN Jian-Xin**, XU Zhi-Cheng, WANG Fang-Fang, XU Qing-Qing, XU Jia-Jia, BAI Zhi-Zhong, JIN Chuan, HE Li |
Key Laboratory of Infrared Imaging Material and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083
|
|
Cite this article: |
ZHOU Yi, CHEN Jian-Xin, XU Zhi-Cheng et al 2014 Chin. Phys. Lett. 31 108503 |
|
|
Abstract The effect of Be doping on the quantum efficiency and the dark current of InAs/GaSb long-wavelength infrared superlattice photodetectors grown by molecular-beam epitaxy on GaSb substrates are reported. A significant improvement of quantum efficiency (QE) with p-type doping is demonstrated. Our results show that Be doping level at 2.5×1015 cm3 gives the highest quantum efficiency of product 28%. We also demonstrate that the increased QE is not only resulted from the longer minority carrier diffusion length, but also the p-n junction location change. Finally, the result also shows that the sample with a doping density of 2.5×1015 cm3 has the largest D* as 8.68×1010 cm?Hz1/2?W?1, which is almost five times D* of the non-intentionally doped one.
|
|
Published: 31 October 2014
|
|
PACS: |
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
|
|
|
[1] Johnson J L, Samoska L A, Gossard A C et al 1996 J. Appl. Phys. 80 1116 [2] Razeghi M, Wei Y, Bae J et al 2003 Proc. SPIE 5246 501 [3] Rogalski A 2007 Infrared Phys. Technol. 50 240 [4] Haddadi A, Darvish S R, Chen G et al 2011 AIP Conf. Proc. 1416 56 [5] Ting D Z Y, Hill C J, Soibel A et al 2009 Appl. Phys. Lett. 95 183502 [6] Nguyen B M, Hoffman D, Delaunay P Y et al 2008 Appl. Phys. Lett. 93 163502 [7] Gautam N, Plis E, Kim H S et al 2010 Proc. SPIE vol 7660 [8] Klein B, Gautam N, Plis E et al 2014 J. Vac. Sci. Technol. B 32 02C101 [9] Zuo D, Qiao P F, Wasserman D et al 2013 Appl. Phys. Lett. 102 141107 [10] Hoffman D, Nguyen B M, Delaunay P Y et al 2007 Appl. Phys. Lett. 91 143507 [11] Szmulowicz and Browm F 2013 J. Appl. Phys. 113 014302 [12] Zhou Y, Chen J X and He L 2013 J. Infrared Millimeter Waves 32 13 [13] Huang L, Li Z F, Zhou Y, Chen J X and Lu W 2014 J. Infrared and Millimeter Waves (accepted) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|