Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 016403    DOI: 10.1088/0256-307X/31/1/016403
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix
CHEN Xiao-Ming**, HUO Kai-Tuo, LIU Peng
College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119
Cite this article:   
CHEN Xiao-Ming, HUO Kai-Tuo, LIU Peng 2014 Chin. Phys. Lett. 31 016403
Download: PDF(845KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bi nanoparticles embedded in a SiO2 matrix were prepared via the high energy ball milling method. The melting behavior of Bi nanoparticles was studied by means of differential scanning calorimetry (DSC) and high-temperature in situ X-ray diffraction (XRD). DSC cannot distinguish the surface melting from 'bulk' melting of the Bi nanoparticles. The XRD intensity of the Bi nanoparticles decreases progressively during the in situ heating process. The variation in the normalized integrated XRD intensity versus temperature is related to the average grain size of Bi nanoparticles. Considering the effects of temperature on Debye–Waller factor and Lorentz-polarization factor, we discuss the XRD results in accordance with surface melting. Our results show that the in situ XRD technique is effective to explore the surface melting of nanoparticles.
Received: 06 October 2013      Published: 28 January 2014
PACS:  64.70.D- (Solid-liquid transitions)  
  61.05.cp (X-ray diffraction)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/016403       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/016403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Xiao-Ming
HUO Kai-Tuo
LIU Peng
[1] Cahn R W 2001 Nature 413 582
[2] Li H et al 2013 Mater. Chem. Phys. 137 1007
[3] Lindemann F A 1910 Phys. Z. 11 609
[4] Li Y H et al 2012 Chin. Phys. Lett. 29 046201
[5] Liu Z J et al 2004 Chin. Phys. B 13 384
[6] Kuba M M and Van Aken D C 2012 Mater. Lett. 77 89
[7] Wang Z et al 2012 Science 338 87
[8] Olson E A et al 2005 J. Appl. Phys. 97 034304
[9] Schwind M et al 2010 Nano Lett. 10 931
[10] Lereah Y et al 2001 Philos. Mag. B 81 1801
[11] Chen X M et al 2008 Solid State Commun. 148 374
[12] Chen X M et al 2006 J. Phys. Conden. Matter 18 7013
[13] Nowick A S and Berry B S 1972 Anelastic Relaxation in Crystalline Solids (New York: Academic Press)
[14] Chen X M et al 2012 Solid State Commun. 152 2031
[15] JCPDS-ICDD Card 2004 International Center for Diffraction Data (Newtown Square: PS)
[16] Klug H P and Alexander L E 1974 X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (New York: Wiley)
[17] Suryanarayana C 2001 Prog. Mater. Sci. 46 1
[18] Jenkins R and Snyder R L 1996 Introduction to X-Ray Powder Diffractometry (New York: Wiley)
[19] Prince E 2004 International Tables for Crystallograplhy vol C Mathematical, Physical and Chemical Tables (London: Kluwer Academic Publishers)
Related articles from Frontiers Journals
[1] Mei-Qin Fu, Qing-Ling Bi, Yong-Jun Lü. Kinetics of Spherical Interface in Crystal Growth[J]. Chin. Phys. Lett., 2017, 34(4): 016403
[2] LI Ying-Hua,CHANG Jing-Zhen LI Xue-Mei,ZHANG Lin**. Multiphase Equation of States of the Solid and Liquid Phases of Al and Ta[J]. Chin. Phys. Lett., 2012, 29(4): 016403
[3] LÜ, Yong-Jun**. Enhanced Surface Premelting of Ni90Si10 Nanoparticles[J]. Chin. Phys. Lett., 2012, 29(4): 016403
Viewed
Full text


Abstract