Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 090501    DOI: 10.1088/0256-307X/30/9/090501
GENERAL |
Multi-Scale Permutation Entropy: A Complexity Measure for Discriminating Two-Phase Flow Dynamics
FAN Chun-Ling1,2, JIN Ning-De1**, CHEN Xiu-Ting2, GAO Zhong-Ke1
1School of Electrical Engineering & Automation, Tianjin University, Tianjin 300072
2College of Automation & Electronic Engineering, Qingdao University of Science & Technology, Qingdao 266042
Cite this article:   
FAN Chun-Ling, JIN Ning-De, CHEN Xiu-Ting et al  2013 Chin. Phys. Lett. 30 090501
Download: PDF(1086KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose an improved permutation entropy method, i.e., multi-scale permutation entropy (MSPE), for discriminating two-phase flow dynamics. We first take the signals from different typical dynamical systems as examples to demonstrate the effectiveness of the methods. In particular, we compute the MSPE values of sinusoidal signal, logistic, Lorenz and Chen chaotic signals and their signals with white Gaussian noise added. We find that the MSPE method can be an effective tool for analyzing the time series with distinct dynamics. We finally calculate the multi-scale permutation entropy and rate of MSPE from 66 groups of conductance fluctuating signals and find that these two measures can be used to identify different flow patterns and further explore dynamical characteristics of gas-liquid flow patterns. These results suggest that the MSPE can potentially be a useful tool for revealing the dynamical complexity of two-phase flow on different scales.
Received: 02 May 2013      Published: 21 November 2013
PACS:  05.45.Tp (Time series analysis)  
  47.55.Ca (Gas/liquid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/090501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/090501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Chun-Ling
JIN Ning-De
CHEN Xiu-Ting
GAO Zhong-Ke
[1] Hubbard M G and Dukler A E 1966 Proc. 1966 Heat Transfer and Fluid Mechanics Institute (Stanford, CA: Stanford University Press)
[2] Jones O C Jr and Zuber N 1975 Int. J. Multiphase Flow 2 273
[3] Vince M A and Lahey R T Jr 1982 Int. J. Multiphase Flow 8 93
[4] Elperin T and Klochko M 2002 Exp. Fluids 32 674
[5] Nguyen V T, Euh D J and Song C H 2010 Int. J. Multiphase Flow 36 755
[6] Huang N E, Shen Z, Long S R et al 1998 Proc. R. Soc. London A 454 903
[7] Gao Z K and Jin N D 2011 Physica A 390 3541
[8] Franca F, Acikgoz M, Lahey R T and Clausse A 1991 Int. J. Multiphase Flow 17 545
[9] Gao Z K and Jin N D 2009 Phys. Rev. E 79 066303
[10] Yang D, Zhai L S and Du M et al 2012 Acta Phys. Sin. 61 120510 (in Chinese)
[11] Liu D Y, Wang Y W, Wang X et al 2012 Acta Phys. Sin. 61 150506 (in Chinese)
[12] Gao Z K, Jin N D, Wang W X and Lai Y C 2010 Phys. Rev. E 82 016210
[13] Jin N D, Dong F and Zhao S 2007 Acta Phys. Sin. 56 720 (in Chinese)
[14] Annunziato M and Abarbanel H D I 1999 Proc. Int. Conf. Soft Computing (Genova Italy)
[15] Xiao N and Jin N D 2007 Acta Phys. Sin. 56 5149 (in Chinese)
[16] Pincus S M 1991 Proc. Natl. Acad. Sci. USA 88 2297
[17] Richman J S and Moorman J R 2000 Am. J. Physiol. Heart Circ. Physiol. 278 2039
[18] Zhuang J J, Ning X B, Zou M et al 2008 Acta Phys. Sin. 57 2805 (in Chinese)
[19] Costa M, Goldberger A L and Peng C K 2002 Phys. Rev. Lett. 89 068102
[20] Bandt C and Pompe B 2002 Phys. Rev. Lett. 88 174102
[21] Bandt C, Keller G and Pompe B 2002 Nonlinearity 15 1595
[22] Li X L, Ouyang G X and Richards D A 2007 Epilepsy Res. 77 70
[23] Li X L, Cui S Y and Voss L J 2008 Anesthesiology 109 448
[24] Olofsen E, Sleigh J W and Dahan A 2008 Br. J. Anaesth. 101 810
[25] Cao Y H, Tung W W, Gao J B et al 2004 Phys. Rev. E 70 046217
[26] Zunino L, Perez D G, Martin M T et al 2008 Phys. Lett. A 372 4768
[27] Li D, Li X L, Liang Z H et al 2010 J. Neural Eng. 7 046010
[28] Kim H S, Eykholt R and Salas J D 1999 Physica D 127 48
[29] Jin N D, Xin Z and Wang J et al 2008 Meas. Sci. Technol. 19 045403
[30] Du M, Jin N D, Gao Z K and Sun B 2012 Chem. Eng. Sci. 82 144
Related articles from Frontiers Journals
[1] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 090501
[2] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 090501
[3] Sheng-Li Zhu, Lu Gan. Specific Emitter Identification Based on Visibility Graph Entropy[J]. Chin. Phys. Lett., 2018, 35(3): 090501
[4] Yi Ji, Hong-Bo Xie. Generalized Multivariate Singular Spectrum Analysis for Nonlinear Time Series De-Noising and Prediction[J]. Chin. Phys. Lett., 2017, 34(12): 090501
[5] Sheng-Li Zhu, Lu Gan. Chaos Identification Based on Component Reordering and Visibility Graph[J]. Chin. Phys. Lett., 2017, 34(5): 090501
[6] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 090501
[7] Jian Jiang, Hong-Bo Xie. Denoising Nonlinear Time Series Using Singular Spectrum Analysis and Fuzzy Entropy[J]. Chin. Phys. Lett., 2016, 33(10): 090501
[8] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 090501
[9] ZHANG Ang-Hui, LI Xiao-Wen, SU Gui-Feng, ZHANG Yi. A Multifractal Detrended Fluctuation Analysis of the Ising Financial Markets Model with Small World Topology[J]. Chin. Phys. Lett., 2015, 32(09): 090501
[10] HAO Qing-Yang, JIN Ning-De, HAN Yun-Feng, GAO Zhong-Ke, ZHAI Lu-Sheng. Multi-Scale Time Asymmetry for Detecting the Breakage of Slug Flow Structure[J]. Chin. Phys. Lett., 2014, 31(12): 090501
[11] QU Hua, MA Wen-Tao, ZHAO Ji-Hong, CHEN Ba-Dong. Kernel Least Mean Kurtosis Based Online Chaotic Time Series Prediction[J]. Chin. Phys. Lett., 2013, 30(11): 090501
[12] ZHANG Xin-Wang, JIN Ning-De, GAO Zhong-Ke, ZHAI Lu-Sheng . Local Property of Recurrence Network for Investigating Gas-Liquid Two-Phase Flow Characteristics[J]. Chin. Phys. Lett., 2013, 30(5): 090501
[13] JIANG Jian, WANG Ru, Pezeril Michel, Wang Qiuping Alexandre. Long Division Unites or Long Union Divides: a Model for Social Network Evolution[J]. Chin. Phys. Lett., 2013, 30(3): 090501
[14] YAN Chuan-Kui, WANG Ru-Bin. Non-identical Neural Network Synchronization Study Based on an Adaptive Learning Rule of Synapses[J]. Chin. Phys. Lett., 2012, 29(9): 090501
[15] QU Jing-Yi, and WANG Ru-Bin. Dynamics of a Cortical Neural Network Based on a Simple Model[J]. Chin. Phys. Lett., 2012, 29(8): 090501
Viewed
Full text


Abstract