GENERAL |
|
|
|
|
Separability of Generalized Graph Product States |
ZHAO Hui**, FAN Jiao |
College of Applied Science, Beijing University of Technology, Beijing 100124 |
|
Cite this article: |
ZHAO Hui, FAN Jiao 2013 Chin. Phys. Lett. 30 090303 |
|
|
Abstract We construct two classes of generalized graph product states and study the entanglement of these states. It is first presented that the density matrices of complex edge-weighted digraphs associated with the generalized graph product in m⊗n systems are positive partial transformation and separable states. Then we prove that the density matrices of the vertex-weighted digraphs associated with another generalized graph product are entangled states.
|
|
Received: 27 June 2013
Published: 21 November 2013
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
02.10.Ox
|
(Combinatorics; graph theory)
|
|
|
|
|
[1] Nielsen M and Chuang I 2000 Quantum Computation and Quantum Information (New York: Cambridge University Press) chap 7 p 277
[2] Bapat R B 2001 Graphs Matrices (New Delhi: Hindustan Book Agency) chap 1 p 9
[3] Newman M E J 2010 Networks: An Introduction (New York: Oxford University Press) chap 6 p 142
[4] Parsonage E, Nguyen H X, Bowden R, Knight S, Falkner M and Roughan M 2011 IEEE International Conference on Network Protocols (Vancouver Canada 17–20 October 2011) p 79
[5] Even S and Even G 2011 Graph Algorithms (New York: Cambridge University Press) chap 6 p 117
[6] Kocay W and Kreher D L 2005 Graphs Algorithms Optimization (Boca Raton: CRC Press) chap 14 p 387
[7] Werner R F 1989 Phys. Rev. A 40 4277
[8] Ostlund S and Rommer S 1995 Phys. Rev. Lett. 75 3537
[9] Fannes M, Nachtergaele B and Werner R 1992 Commun. Math. Phys. 144 443
[10] Eisert J and Plenio M B 2003 Int. J. Quantum Inf. 1 479
[11] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513
[12] Braunst S L, Ghosh S and Severini S 2006 Ann. Comb. 10 291
[13] Braunst S L et al 2006 Phys. Rev. A 73 012320
[14] Chen L B 2002 Chin. Phys. B 11 999
[15] Huang Y X and Zhan M S 2004 Chin. Phys. B 13 2021
[16] Xu J, Chen X Y and Li H T 2012 Acta Phys. Sin. 61 220304 (in Chinese)
[17] West D B 2001 Introduction to Graph Theory (Upper Saddle River: Prentice Hall) chap 1 p 20
[18] Diestel R 2005 Graph Theory (New York: Springer-Verlag) vol 173 chap 1 p 5
[19] Horn R A and Johnson C R 1985 Matrix Analysis (Cambridge: Cambridge University Press) chap 7 p 369
[20] Wu C W 2006 Phys. Lett. A 351 18
[21] Adhikari B, Adhikari S and Banerjee S 2012 arXiv:1205.2747 [quant-ph]
[22] Solomon Ivan J, Mukunda N and Simon R 2012 Quantum Inf. Process. 11 873 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|