CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Surface Photovoltage Mechanism of a Silicon Nanoporous Pillar Array |
HU Zhen-Gang**, TIAN Yong-Tao, LI Xin-Jian |
Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450001
|
|
Cite this article: |
HU Zhen-Gang, TIAN Yong-Tao, LI Xin-Jian 2013 Chin. Phys. Lett. 30 087801 |
|
|
Abstract The surface photovoltage (SPV) mechanism of a silicon nanoporous pillar array (Si-NPA) is investigated by using SPV spectroscopy in different external electric fields. Through comparisons with the SPV spectrum of single crystal silicon (sc-Si), the silicon nano-crystallite (nc-Si)/SiOx nanostructure of Si-NPA is proved to be capable of producing obvious SPV in the wavelength range 300–580 nm. The SPV for the sc-Si layer and the nc-Si/SiOx nanostructure has shown certain contrary characters in different external electric fields. Through analysis, the localized states in the amorphous SiOx matrix are believed to dominate the SPV for the nc-Si/SiOx nanostructure.
|
|
Received: 13 May 2013
Published: 21 November 2013
|
|
PACS: |
78.56.-a
|
(Photoconduction and photovoltaic effects)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
78.67.Rb
|
(Nanoporous materials)
|
|
|
|
|
[1] Khriachtchev L, Nikitin T, Velagapudi R, Lahtinen J and Novikov S 2009 Appl. Phys. Lett. 94 043115 [2] Ray M, Sarkar S, Bandyopadhyay N R, Hossain S M and Pramanick A K 2009 J. Appl. Phys. 105 074301 [3] Ray M, Basu T S, Jana A, Bandyopadhyay N R, Hossain S M, Pramanick A K and Klie R F 2010 J. Appl. Phys. 107 064311 [4] Rinnert H, Jambois O and Vergnat M 2009 J. Appl. Phys. 106 023501 [5] Soulairol R, Cleri F 2010 Solid State Sci. 12 163 [6] Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev O I, VanTendeloo G and Moshchalkov V V 2008 Nat. Nanotechnol. 3 174 [7] Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C 1999 Phys. Rev. Lett. 82 197 [8] Chen X B, Pi X D and Yang D R 2010 J. Phys. Chem. C 114 8774 [9] Seino K, Bechstedt F and Kroll P 2009 Nanotechnology 20 135702 [10] Xu H J and Li X J 2008 Opt. Express 16 2933 [11] Feng F, Zhi G, Jia H S, Cheng L, Tian Y T and Li X J 2009 Nanotechnology 20 295501 [12] Xu H J and Li X J 2007 Appl. Phys. Lett. 91 201912 [13] Xu H J, Jia H S, Yao Z T and Li X J 2008 J. Mater. Res. 23 121 [14] Li X J and Jiang W F 2007 Nanotechnology 18 065203 [15] Dong Y F, Li L Y, Jiang W F, Wang H Y and Li X J 2009 Physica E 41 711 [16] Xu H J and Li X J 2008 Appl. Phys. Lett. 93 172105 [17] Han C B, He C and Li X J 2011 Adv. Mater. 23 4811 [18] Han C B, He C, Meng X B, Wan Y R, Tian Y T, Zhang Y J and Li X J 2012 Opt. Express 20 5636 [19] Kronik L and Shapira Y 2001 Surf. Interface Anal. 31 954 [20] Kronik L and Shapira Y 1999 Surf. Sci. Rep. 37 1 [21] Sitarek P, Misiewicz J, Huang Y S, Hsu H P and Tiong K K 2013 J. Appl. Phys. 113 073702 [22] Chan C H, Kao C W, Hsu H P, Huang Y S, Wang J S, Shen J L and Tiong K K 2008 J. Appl. Phys. 103 084303 [23] Zhao Q D, Wang D J, Peng L L, Lin Y H, Yang M and Xie T F 2007 Chem. Phys. Lett. 434 96 [24] Donchev V, Kirilov K, Ivanov Ts and Germanova K A 2007 J. Appl. Phys. 101 124305 [25] Patel B K, Rath S and Sahu S N 2006 Physica E 33 268 [26] Hu Z G, Tian Y T and Li X J 2013 Chin. Phys. Lett. 30 067803 [27] Cavalcoli D, Rossi M and Cavallini A 2011 J. Appl. Phys. 109 053719 [28] Ray M, Bandyopadhyay N R, Ghanta U, Klie R F, Pramanick A K, Das S, Ray S K and Hossain S M 2011 J. Appl. Phys. 109 094309 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|