Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 087801    DOI: 10.1088/0256-307X/30/8/087801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Surface Photovoltage Mechanism of a Silicon Nanoporous Pillar Array
HU Zhen-Gang**, TIAN Yong-Tao, LI Xin-Jian
Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450001
Cite this article:   
HU Zhen-Gang, TIAN Yong-Tao, LI Xin-Jian 2013 Chin. Phys. Lett. 30 087801
Download: PDF(593KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The surface photovoltage (SPV) mechanism of a silicon nanoporous pillar array (Si-NPA) is investigated by using SPV spectroscopy in different external electric fields. Through comparisons with the SPV spectrum of single crystal silicon (sc-Si), the silicon nano-crystallite (nc-Si)/SiOx nanostructure of Si-NPA is proved to be capable of producing obvious SPV in the wavelength range 300–580 nm. The SPV for the sc-Si layer and the nc-Si/SiOx nanostructure has shown certain contrary characters in different external electric fields. Through analysis, the localized states in the amorphous SiOx matrix are believed to dominate the SPV for the nc-Si/SiOx nanostructure.
Received: 13 May 2013      Published: 21 November 2013
PACS:  78.56.-a (Photoconduction and photovoltaic effects)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  78.67.Rb (Nanoporous materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/087801       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/087801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Zhen-Gang
TIAN Yong-Tao
LI Xin-Jian
[1] Khriachtchev L, Nikitin T, Velagapudi R, Lahtinen J and Novikov S 2009 Appl. Phys. Lett. 94 043115
[2] Ray M, Sarkar S, Bandyopadhyay N R, Hossain S M and Pramanick A K 2009 J. Appl. Phys. 105 074301
[3] Ray M, Basu T S, Jana A, Bandyopadhyay N R, Hossain S M, Pramanick A K and Klie R F 2010 J. Appl. Phys. 107 064311
[4] Rinnert H, Jambois O and Vergnat M 2009 J. Appl. Phys. 106 023501
[5] Soulairol R, Cleri F 2010 Solid State Sci. 12 163
[6] Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev O I, VanTendeloo G and Moshchalkov V V 2008 Nat. Nanotechnol. 3 174
[7] Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C 1999 Phys. Rev. Lett. 82 197
[8] Chen X B, Pi X D and Yang D R 2010 J. Phys. Chem. C 114 8774
[9] Seino K, Bechstedt F and Kroll P 2009 Nanotechnology 20 135702
[10] Xu H J and Li X J 2008 Opt. Express 16 2933
[11] Feng F, Zhi G, Jia H S, Cheng L, Tian Y T and Li X J 2009 Nanotechnology 20 295501
[12] Xu H J and Li X J 2007 Appl. Phys. Lett. 91 201912
[13] Xu H J, Jia H S, Yao Z T and Li X J 2008 J. Mater. Res. 23 121
[14] Li X J and Jiang W F 2007 Nanotechnology 18 065203
[15] Dong Y F, Li L Y, Jiang W F, Wang H Y and Li X J 2009 Physica E 41 711
[16] Xu H J and Li X J 2008 Appl. Phys. Lett. 93 172105
[17] Han C B, He C and Li X J 2011 Adv. Mater. 23 4811
[18] Han C B, He C, Meng X B, Wan Y R, Tian Y T, Zhang Y J and Li X J 2012 Opt. Express 20 5636
[19] Kronik L and Shapira Y 2001 Surf. Interface Anal. 31 954
[20] Kronik L and Shapira Y 1999 Surf. Sci. Rep. 37 1
[21] Sitarek P, Misiewicz J, Huang Y S, Hsu H P and Tiong K K 2013 J. Appl. Phys. 113 073702
[22] Chan C H, Kao C W, Hsu H P, Huang Y S, Wang J S, Shen J L and Tiong K K 2008 J. Appl. Phys. 103 084303
[23] Zhao Q D, Wang D J, Peng L L, Lin Y H, Yang M and Xie T F 2007 Chem. Phys. Lett. 434 96
[24] Donchev V, Kirilov K, Ivanov Ts and Germanova K A 2007 J. Appl. Phys. 101 124305
[25] Patel B K, Rath S and Sahu S N 2006 Physica E 33 268
[26] Hu Z G, Tian Y T and Li X J 2013 Chin. Phys. Lett. 30 067803
[27] Cavalcoli D, Rossi M and Cavallini A 2011 J. Appl. Phys. 109 053719
[28] Ray M, Bandyopadhyay N R, Ghanta U, Klie R F, Pramanick A K, Das S, Ray S K and Hossain S M 2011 J. Appl. Phys. 109 094309
Related articles from Frontiers Journals
[1] Xinhuang Lin, Haotian Long, Shuo Ke, Yuyuan Wang, Ying Zhu, Chunsheng Chen, Changjin Wan, and Qing Wan. Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding[J]. Chin. Phys. Lett., 2022, 39(6): 087801
[2] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 087801
[3] B. Merabet, H. Alamri, M. Djermouni, A. Zaoui, S. Kacimi, A. Boukortt, M. Bejar. Optimal Bandgap of Double Perovskite La-Substituted Bi$_{2}$FeCrO$_{6}$ for Solar Cells: an ab initio GGA+$U$ Study[J]. Chin. Phys. Lett., 2017, 34(1): 087801
[4] Zhao-Jun Gong, Xiang-Dong Chen, Cong-Cong Li, Shen Li, Bo-Wen Zhao, Fang-Wen Sun. Generation of Nitrogen-Vacancy Center Pairs in Bulk Diamond by Molecular Nitrogen Implantation[J]. Chin. Phys. Lett., 2016, 33(02): 087801
[5] ZHU Jian, LU Min, WU Bo, HOU Xiao-Yuan. F4TCNQ-Induced Exciton Quenching Studied by Using in-situ Photoluminescence Measurements[J]. Chin. Phys. Lett., 2012, 29(9): 087801
[6] ZHANG Dong-Yan, ZHENG Xin-He, LI Xue-Fei, WU Yuan-Yuan, WANG Jian-Feng, YANG Hui. High Concentration InGaN/GaN Multi-Quantum Well Solar Cells with a Peak Open-Circuit Voltage of 2.45 V[J]. Chin. Phys. Lett., 2012, 29(6): 087801
[7] CUI Jin-Ming, CHEN Xiang-Dong, FAN Le-Le, GONG Zhao-Jun, ZOU Chong-Wen, SUN Fang-Wen, HAN Zheng-Fu, GUO Guang-Can. Generation of Nitrogen-Vacancy Centers in Diamond with Ion Implantation[J]. Chin. Phys. Lett., 2012, 29(3): 087801
Viewed
Full text


Abstract