FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High Power Quasi-Continuous-Wave Diode-End-Pumped Nd:YAG Slab Amplifier at 1319 nm |
ZHENG Jian-Kui1,2, BO Yong1**, XIE Shi-Yong1, ZUO Jun-Wei1, WANG Peng-Yuan1,2, GUO Ya-Ding1, LIU Biao-Long1,2, PENG Qin-Jun1, CUI Da-Fu1, LEI Wen-Qiang1, XU Zu-Yan1 |
1RCLPT, Key Lab of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 2The University of Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
ZHENG Jian-Kui, BO Yong, XIE Shi-Yong et al 2013 Chin. Phys. Lett. 30 074202 |
|
|
Abstract We report a high power high beam quality quasi-continuous-wave (QCW) diode-end-pumped Nd:YAG slab amplifier at 1319 nm. The strongest 1064 nm parasitic oscillation has been successfully suppressed by reasonable coating design. In a five-pass configuration, the amplifier yields a 42.3 W linearly polarized 1319 nm output at repetition rate of 1 kHz with pulse duration of 75 μs and beam quality factors of Mx2=1.13 and My2=2.16 in the orthogonal directions. The fluctuation of the amplifier output power is measured to be ±0.6 %. Furthermore, a computational model of QCW pulse amplification is employed to examine the amplification process.
|
|
Received: 07 April 2013
Published: 21 November 2013
|
|
PACS: |
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.60.Rn
|
(Relaxation oscillations and long pulse operation)
|
|
|
|
|
[1] Eggleston J, Kane T, Kuhn K, Unternahrer J and Byer R 1984 Quantum Electron. 20 289 [2] Liu H, Gong M L 2012 Chin. Phys. B 21 104208 [3] Koechner W 2006 Solid State Laser Engineering (New York: Springer) [4] Seymour R S, Picone P J and Levin M 1984 J. Phys. E: Sci. Instrum. 17 21 [5] Xue Q H, Zheng Q, Bu Y K and Qian L S 2004 Chin. Opt. Lett. 2 708 [6] Xu L Z, Xu Y, Chen M, Pang Q S and Li G 2011 Laser Phys. 21 1729 [7] Zhu P F, Li B, Liu W Q, Liu T H, Fang C X, Zhao Y and Zheng Q 2012 Opt. Spectrosc. 113 560 [8] Sun Z P, Li R N, Bi Y, Yang X D, Bo Y, Hou W, Lin X C, Zhang H B, Cui D F and Xu Z Y 2004 Opt. Express 12 6428 [9] Mu X D and Ding J 2005 Opt. Lett. 30 1372 [10] Lu Y F, Xu Z Y, Gao H W etc 2009 Acta Phys. Sin. 58 970 (in Chinese) [11] Yue J, She C Y, Williams B P, Vance J D, Acott P E and Kawahara T D 2009 Opt. Lett. 34 1093 [12] Xu Z Y, Xie S Y, Bo Y, Zuo J W, Wang B S, Wang P Y, Wang Z C Liu Y, Xu Y T Xu J L, Peng Q J, Cui D F 2011 Acta Phys. Sin. 31 0900111 (in Chinese) [13] Inoue Y and Fujikawa S 2000 Quantum Electron. 36 751 [14] Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Chen J, Chen W D and Chen Z Q 2007 Appl. Opt. 46 384 [15] Hodgson N, Dong S L and Lu Q T 1993 Opt. Lett. 18 1727 [16] Kovalev V I, Harrison R G and Scott A M 2005 Opt. Lett. 30 3386 [17] Goodno G D, Komine H, McNaught S J, Weiss S B, Redmond S, Long W, Simpson R, Cheung E C, Howland D, Epp P, Weber M, McClellan M, Sollee J and Injeyan H 2006 Opt. Lett. 31 1247 [18] Wandt C, Klingebiel S, Siebold M, Major Z, Krausz F and Karsch S 2008 Opt. Lett. 33 1111 [19] Xie S Y, Lu Y F, Ma Q L, Wang P Y, Shen Y, Zong N, Yang F, Bo Y, Peng Q J, Cui D F and Xu Z Y 2010 Chin. Phys. B 19 064208 [20] Yan R P, Yu X, Chen D Y etc 2012 Chin. Phys. B 21 024208 [21] Liu H, Gong M L 2012 Chin. Phys. B 21 024207 [22] Gong M L, Liu H 2010 Chin. Phys. B 19 054209 [23] Zhang H L, Yu J, Yan Y etc 2012 Chin. Phys. Lett. 29 034204 [24] Zhong M, Liu Q X 2010 Acta Phys. Sin. 59 8535 (in Chinese) [25] Russbueldt P, Mans T, Weitenberg J, Hoffmann H D and Poprawe R 2010 Opt. Lett. 35 4169 [26] Li J, Zhang H L, Abdul Raof, Cui L, Yan Y, Xu L and Xin J G 2010 Laser Infrared 40 957 (in Chinese) [27] Lu D, Huang L, Wang Q, Liu Q and Gong M L 2007 Chin. J. Lasers 34 1338 [28] Lee M F and John S N 1963 J. Appl. Phys. 34 2346 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|