Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 074202    DOI: 10.1088/0256-307X/30/7/074202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High Power Quasi-Continuous-Wave Diode-End-Pumped Nd:YAG Slab Amplifier at 1319 nm
ZHENG Jian-Kui1,2, BO Yong1**, XIE Shi-Yong1, ZUO Jun-Wei1, WANG Peng-Yuan1,2, GUO Ya-Ding1, LIU Biao-Long1,2, PENG Qin-Jun1, CUI Da-Fu1, LEI Wen-Qiang1, XU Zu-Yan1
1RCLPT, Key Lab of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
2The University of Chinese Academy of Sciences, Beijing 100190
Cite this article:   
ZHENG Jian-Kui, BO Yong, XIE Shi-Yong et al  2013 Chin. Phys. Lett. 30 074202
Download: PDF(703KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a high power high beam quality quasi-continuous-wave (QCW) diode-end-pumped Nd:YAG slab amplifier at 1319 nm. The strongest 1064 nm parasitic oscillation has been successfully suppressed by reasonable coating design. In a five-pass configuration, the amplifier yields a 42.3 W linearly polarized 1319 nm output at repetition rate of 1 kHz with pulse duration of 75 μs and beam quality factors of Mx2=1.13 and My2=2.16 in the orthogonal directions. The fluctuation of the amplifier output power is measured to be ±0.6 %. Furthermore, a computational model of QCW pulse amplification is employed to examine the amplification process.
Received: 07 April 2013      Published: 21 November 2013
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Rn (Relaxation oscillations and long pulse operation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/074202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/074202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Jian-Kui
BO Yong
XIE Shi-Yong
ZUO Jun-Wei
WANG Peng-Yuan
GUO Ya-Ding
LIU Biao-Long
PENG Qin-Jun
CUI Da-Fu
LEI Wen-Qiang
XU Zu-Yan
[1] Eggleston J, Kane T, Kuhn K, Unternahrer J and Byer R 1984 Quantum Electron. 20 289
[2] Liu H, Gong M L 2012 Chin. Phys. B 21 104208
[3] Koechner W 2006 Solid State Laser Engineering (New York: Springer)
[4] Seymour R S, Picone P J and Levin M 1984 J. Phys. E: Sci. Instrum. 17 21
[5] Xue Q H, Zheng Q, Bu Y K and Qian L S 2004 Chin. Opt. Lett. 2 708
[6] Xu L Z, Xu Y, Chen M, Pang Q S and Li G 2011 Laser Phys. 21 1729
[7] Zhu P F, Li B, Liu W Q, Liu T H, Fang C X, Zhao Y and Zheng Q 2012 Opt. Spectrosc. 113 560
[8] Sun Z P, Li R N, Bi Y, Yang X D, Bo Y, Hou W, Lin X C, Zhang H B, Cui D F and Xu Z Y 2004 Opt. Express 12 6428
[9] Mu X D and Ding J 2005 Opt. Lett. 30 1372
[10] Lu Y F, Xu Z Y, Gao H W etc 2009 Acta Phys. Sin. 58 970 (in Chinese)
[11] Yue J, She C Y, Williams B P, Vance J D, Acott P E and Kawahara T D 2009 Opt. Lett. 34 1093
[12] Xu Z Y, Xie S Y, Bo Y, Zuo J W, Wang B S, Wang P Y, Wang Z C Liu Y, Xu Y T Xu J L, Peng Q J, Cui D F 2011 Acta Phys. Sin. 31 0900111 (in Chinese)
[13] Inoue Y and Fujikawa S 2000 Quantum Electron. 36 751
[14] Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Chen J, Chen W D and Chen Z Q 2007 Appl. Opt. 46 384
[15] Hodgson N, Dong S L and Lu Q T 1993 Opt. Lett. 18 1727
[16] Kovalev V I, Harrison R G and Scott A M 2005 Opt. Lett. 30 3386
[17] Goodno G D, Komine H, McNaught S J, Weiss S B, Redmond S, Long W, Simpson R, Cheung E C, Howland D, Epp P, Weber M, McClellan M, Sollee J and Injeyan H 2006 Opt. Lett. 31 1247
[18] Wandt C, Klingebiel S, Siebold M, Major Z, Krausz F and Karsch S 2008 Opt. Lett. 33 1111
[19] Xie S Y, Lu Y F, Ma Q L, Wang P Y, Shen Y, Zong N, Yang F, Bo Y, Peng Q J, Cui D F and Xu Z Y 2010 Chin. Phys. B 19 064208
[20] Yan R P, Yu X, Chen D Y etc 2012 Chin. Phys. B 21 024208
[21] Liu H, Gong M L 2012 Chin. Phys. B 21 024207
[22] Gong M L, Liu H 2010 Chin. Phys. B 19 054209
[23] Zhang H L, Yu J, Yan Y etc 2012 Chin. Phys. Lett. 29 034204
[24] Zhong M, Liu Q X 2010 Acta Phys. Sin. 59 8535 (in Chinese)
[25] Russbueldt P, Mans T, Weitenberg J, Hoffmann H D and Poprawe R 2010 Opt. Lett. 35 4169
[26] Li J, Zhang H L, Abdul Raof, Cui L, Yan Y, Xu L and Xin J G 2010 Laser Infrared 40 957 (in Chinese)
[27] Lu D, Huang L, Wang Q, Liu Q and Gong M L 2007 Chin. J. Lasers 34 1338
[28] Lee M F and John S N 1963 J. Appl. Phys. 34 2346
Related articles from Frontiers Journals
[1] Jianping Shen, Xin Huang, Songtao Jiang, Rongrong Jiang, Huiyin Wang, Peng Lu, Shaocong Xu, and Mingyu Jiao. Design and Development of a High-Performance LED-Side-Pumped Nd:YAG Rod Laser[J]. Chin. Phys. Lett., 2022, 39(10): 074202
[2] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings *[J]. Chin. Phys. Lett., 0, (): 074202
[3] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings[J]. Chin. Phys. Lett., 2020, 37(6): 074202
[4] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 074202
[5] Fang-Jin Ning, Zhi-Yong Li, Rong-Qing Tan, Lie-Mao Hu, Song-Yang Liu. Diode Pumped Rubidium Laser Based on Etalon Effects of Alkali Cell Windows[J]. Chin. Phys. Lett., 2020, 37(3): 074202
[6] Jia-Jun Song, Xiang-Hao Meng, Zhao-Hua Wang, Xian-Zhi Wang, Wen-Long Tian, Jiang-Feng Zhu, Shao-Bo Fang, Hao Teng, Zhi-Yi Wei. Generation of Femtosecond Laser Pulse at 1.43GHz from an Optical Parametric Oscillator Based on LBO Crystal[J]. Chin. Phys. Lett., 2019, 36(12): 074202
[7] Qiu-Run He, Jing Guo, Bao-Fu Zhang, Zhong-Xing Jiao. High-Repetition-Rate and High-Beam-Quality Laser Pulses with 1.5MW Peak Power Generation from a Two-Stage Nd:YVO$_{4}$ Amplifier[J]. Chin. Phys. Lett., 2019, 36(11): 074202
[8] Shuang Wu, Yong-Ji Yu, Yue Li, Yu-Heng Wang, Jing-Liang Liu, Guang-Yong Jin. Wavelength-Locked 878.6nm In-Band Pumped Intra-Cavity 2.1μm Optical Parametric Oscillator[J]. Chin. Phys. Lett., 2019, 36(8): 074202
[9] Xiao-Ming Duan, Guang-Peng Chen, Ying-Jie Shen, Li-He Zheng, Liang-Bi Su. High-Power Continuous-Wave and Acousto-Optical Q-Switched Ho:(Sc$_{0.5}$Y$_{0.5}$)$_{2}$SiO$_{5}$ Laser Pumped by Laser Diode[J]. Chin. Phys. Lett., 2019, 36(6): 074202
[10] Shuai Li, Ya-Ding Guo, Zhong-Zheng Chen, Lin Zhang, Ke-Ling Gong, Zhi-Feng Zhang, Bao-Shan Wang, Jian Xu, Yi-Ting Xu, Lei Yuan, Yang Kou, Yang Liu, Yan-Yong Lin, Qin-Jun Peng, Zu-Yan Xu. The 10kW Level High Brightness Face-Pumped Slab Nd:YAG Amplifier with a Hybrid Cooling System[J]. Chin. Phys. Lett., 2019, 36(4): 074202
[11] Qing-Qing Zhou, Shen-Cheng Shi, Si-Meng Chen, Yan-Min Duan, Xi-Mei Zhang, Jing Guo, Bin Zhao, Hai-Yong Zhu. First-Stokes Wavelengths at 1175.8 and 1177.1nm Generated in a Diode End-Pumped Nd:YVO$_{4}$/LuVO$_{4}$ Raman Laser[J]. Chin. Phys. Lett., 2019, 36(1): 074202
[12] Xiao-Dan Dou, Jing-Nan Yang, Yan-Jun Ma, Wen-Juan Han, Hong-Hao Xu, Jun-Hai Liu. Passive Q-Switching of a Yb:LuVO$_{4}$ Laser with Cr$^{4+}$:YAG: Approaching the Intrinsic Upper Limit of Repetition Rate[J]. Chin. Phys. Lett., 2018, 35(6): 074202
[13] Qi Qin, Ping Li, Jin-Xi Bai, Li-Li Wang, Bing-Hai Liu, Xiao-Han Chen. Passively Q-Switched Nd:YVO$_{4}$ Laser Using a Gold Nanotriangle Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(6): 074202
[14] Wei Si, Yan-Jun Ma, Li-Sha Wang, Hua-Lei Yuan, Wei-Jin Kong, Jun-Hai Liu. Acousto-Optically Q-Switched Operation of Yb:CNGG Disordered Crystal Laser[J]. Chin. Phys. Lett., 2017, 34(12): 074202
[15] Lei Liu, Shou-Huan Zhou, Yang Liu, Zhe Wang, Gang Wang, Hong Zhao. The 5.2kW Nd:YAG Slab Amplifier Chain Seeded by Nd:YVO$_{4}$ Innoslab Laser[J]. Chin. Phys. Lett., 2017, 34(6): 074202
Viewed
Full text


Abstract