Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 067201    DOI: 10.1088/0256-307X/30/6/067201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Quantum Confinement Effects in Dynamically Screened Quasi-One-Dimensional Systems
WANG Ting-Dong1,2, HUAI Ping1**
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
WANG Ting-Dong, HUAI Ping 2013 Chin. Phys. Lett. 30 067201
Download: PDF(553KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically study the quantum confinement effects on the self-energies of electrons and holes in quasi-one-dimensional semiconductor systems. It is found that the effective Coulomb interactions are enhanced with the increase in lateral confinement and the decrease in confinement size. The single-particle self-energies of electrons and holes are calculated in dynamic plasmon pole approximation within the GW approximation, where G refers to Green's function and W is the dynamically screened Coulomb interaction. The real and imaginary parts of the self-energies have a strong dependence on the effective Coulomb interactions.
Received: 21 January 2013      Published: 31 May 2013
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  78.66.Fd (III-V semiconductors)  
  78.67.Lt (Quantum wires)  
  68.65.La (Quantum wires (patterned in quantum wells))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/067201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/067201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Ting-Dong
HUAI Ping
[1] Gammon D 2000 Nature 405 899
[2] Arakawa Y and Sakaki H 1982 Appl. Phys. Lett. 40 939
[3] Asada M, Miyamoto Y and Suematsu Y 1985 Jpn. J. Appl. Phys. 24 L95
[4] Asada M, Miyamoto Y and Suematsu Y 1986 IEEE J. Quantum Electron. 22 1915
[5] Kapon E, Hwang D M and Bhat R 1989 Phys. Rev. Lett. 63 430
[6] Okano M et al 2007 Appl. Phys. Lett. 90 091108
[7] Okano M et al 2011 Phy. Status Solidi. C 8 20
[8] Yoshita M et al 2007 J. Phys.: Condens. Matter 19 295217
[9] Ando H, Oohashi H and Kanbe H 1991 J. Appl. Phys. 70 7024
[10] Akiyama H et al 2003 Phys. Rev. B 67 041302
[11] Akiyama H et al 2008 Physica E 40 1726
[12] Hayamizu Y et al 2007 Phys. Rev. Lett. 99 167403
[13] Rossi F and Molinari E 1996 Phys. Rev. Lett. 76 3642
[14] Tassone F and Piermarocchi C 1999 Phys. Rev. Lett. 82 843
[15] Piermarocchi C and Tassone F 2001 Phys. Rev. B 63 5308
[16] Ogawa T and Takagahara T 1991 Phys. Rev. B 44 8138
[17] Haug H and Koch S W 2004 Quantum Theory of the Optical and Electronic Properties of Semiconductors (Singapore: World Scientific) chap 5 p 83
[18] Lindberg M and Koch S W 1988 Phys. Rev. B 38 3342
[19] Huai P et al 2007 Conference on Lasers and Electro-Optics-Pacific Rim 2007. CLEO/Pacific Rim 2007 (Seoul, South Korea 26–31 August 2007) p 62
[20] Binder R 1995 Prog. Quantum Electron. 19 307
[21] Haug H and Schmitt-Rink S 1984 Prog. Quantum Electron. 9 3
[22] Benner S and Haug H 1991 Europhys. Lett. 16 579
[23] Sarma S D, Hwang E H and Zheng L 1996 Phys. Rev. B 54 8057
[24] Wang D W and Sarma S D 2001 Phys. Rev. B 64 195313
[25] Lindhard J 1954 Kgl. Dan. Videnskab. Selsk. Mat. fys. Medd. 28 1
[26] Mahan G D 2000 Many Particle Physics (Berlin: Springer-Verlag) chap 5 p 360
[27] Hu B Y K and Sarma S D 1993 Phys. Rev. B 48 5469
Related articles from Frontiers Journals
[1] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 067201
[2] Rui-Chun Xiao, Zibo Wang, Zhi-Qiang Zhang, Junwei Liu, and Hua Jiang. Magnus Hall Effect in Two-Dimensional Materials[J]. Chin. Phys. Lett., 2021, 38(5): 067201
[3] Zhen Ning, Bo Fu, Qinwei Shi, and Xiaoping Wang. Universal Minimum Conductivity in Disordered Double-Weyl Semimetal[J]. Chin. Phys. Lett., 2020, 37(11): 067201
[4] Xiao Wang, Guo-Dong Wei. Quantum Scars in Microwave Dielectric Photonic Graphene Billiards[J]. Chin. Phys. Lett., 2020, 37(1): 067201
[5] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 067201
[6] Yi-Heng Yin, Yan-Xiong Niu, Ming Ding, Hai-Yue Liu, Zhen-Jiang Liang. Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials[J]. Chin. Phys. Lett., 2016, 33(05): 067201
[7] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 067201
[8] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 067201
[9] TAN Xun-Qiong. Electronic Transport of the Adsorbed Trigonal Graphene Flake: A First Principles Calculation[J]. Chin. Phys. Lett., 2014, 31(12): 067201
[10] CHEN Bao-Jun, TANG Zhen-An, JU Yan-Jie. A Numerical Method for Modeling the Effects of Irregular Shape on Interconnect Resistance[J]. Chin. Phys. Lett., 2014, 31(05): 067201
[11] LI Ming-Jun, LONG Meng-Qiu, XU Hui. Effects of the Bridging Bond on Electronic Transport in a D-B-A Device[J]. Chin. Phys. Lett., 2013, 30(8): 067201
[12] ZHANG Yi-Jun, ZHAO Jing, ZOU Ji-Jun, NIU Jun, CHEN Xin-Long, CHANG Ben-Kang. The High Quantum Efficiency of Exponential-Doping AlGaAs/GaAs Photocathodes Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(4): 067201
[13] Clóves G. Rodrigues. Onset for the Electron Velocity Overshoot in Indium Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 067201
[14] LI Chuan-Feng, CHEN Geng, GONG Ming, LI Hai-Qiao, NIU Zhi-Chuan. Experimental Research on Carrier Redistribution in InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2012, 29(9): 067201
[15] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 067201
Viewed
Full text


Abstract