Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 064701    DOI: 10.1088/0256-307X/30/6/064701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Lateral Migration and Nonuniform Rotation of Biconcave Particle Suspended in Poiseuille Flow
WEN Bing-Hai1,2,3, CHEN Yan-Yan4, ZHANG Ren-Liang1, ZHANG Chao-Ying3**, FANG Hai-Ping1
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
2University of Chinese Academy of Sciences, Beijing 100049
3College of Computer Science and Information Engineering, Guangxi Normal University, Guilin 541004
4Department of Physics, Zhejiang Normal University, Jinhua 321004
Cite this article:   
WEN Bing-Hai, CHEN Yan-Yan, ZHANG Ren-Liang et al  2013 Chin. Phys. Lett. 30 064701
Download: PDF(1141KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A biconcave particle suspended in a Poiseuille flow is investigated by the multiple-relaxation-time lattice Boltzmann method with the Galilean-invariant momentum exchange method. The lateral migration and equilibrium of the particle are similar to the Segré-Silberberg effect in our numerical simulations. Surprisingly, two lateral equilibrium positions are observed corresponding to the releasing positions of the biconcave particle. The upper equilibrium positions significantly decrease with the increasing Reynolds number, whereas the lower ones are almost insensitive to the Reynolds number. Interestingly, the regular wave accompanied by nonuniform rotation is exhibited in the lateral movement of the biconcave particle. It can be attributed to the fact that the biconcave shape in various postures interacts with the parabolic velocity distribution of the Poiseuille flow. A set of contours illustrate the dynamic flow field when the biconcave particle has successive postures in a rotating period.
Received: 25 January 2013      Published: 31 May 2013
PACS:  47.11.Qr (Lattice gas)  
  47.11.-j (Computational methods in fluid dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/064701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/064701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEN Bing-Hai
CHEN Yan-Yan
ZHANG Ren-Liang
ZHANG Chao-Ying
FANG Hai-Ping
[1] Segre G and Silberberg A 1962 J. Fluid Mech. 14 115
[2] Karnis A, Goldsmith H L and Mason S G 1966 Can. J. Chem. Eng. 44 181
[3] Asmolov E S 1999 J. Fluid Mech. 381 63
[4] Qi D, Luo L, Aravamuthan R and Strieder W 2002 J. Stat. Phys. 107 101
[5] Zhang C Y, Tan H L, Liu M R, Kong L J and Shi J 2005 Chin. Phys. Lett. 22 896
[6] Matas J P, Morris J F and Guazzelli E 2004 J. Fluid Mech. 515 171
[7] Fang H P, Wang Z W, Lin Z F and Liu M R 2002 Phys. Rev. E 65 051925
[8] Kaoui B, Ristow G H, Cantat I, Misbah C and Zimmermann W 2008 Phys. Rev. E 77 021903
[9] Danker G, Vlahovska P M and Misbah C 2009 Phys. Rev. Lett. 102 148102
[10] Shi L L, Pan T W and Glowinski R 2012 Phys. Rev. E 86 056308
[11] Coupier G, Farutin A, Minetti C, Podgorski T and Misbah C 2012 Phys. Rev. Lett. 108 178106
[12] Li H B, Yi H H, Shan X W and Fang H P 2008 Europhys. Lett. 81 54002
[13] Jiang L G, Wu H A, Zhou X Z and Wang X X 2010 Chin. Phys. Lett. 27 028704
[14] Dupire J, Socol M and Viallat A 2012 Proc. Natl. Acad. Sci. U.S.A. 109 20808
[15] Fedosov D A, Caswell B and Karniadakis G E 2010 Biophys. J. 98 2215
[16] Shen Z Y and He Y 2012 Chin. Phys. Lett. 29 024703
[17] Xia Z H, Connington K W, Rapaka S, Yue P T, Feng J J and Chen S Y 2009 J. Fluid Mech. 625 249
[18] Huang H B, Yang X, Krafczyk M and Lu X Y 2012 J. Fluid Mech. 692 369
[19] Qian Y H, d'Humières D and Lallemand P 1992 Europhys. Lett. 17 479
[20] Qian Y H and Orszag S A 1993 Europhys. Lett. 21 255
[21] Chen S Y, Chen H D, Martinez D and Matthaeus W 1991 Phys. Rev. Lett. 67 3776
[22] Chen S Y and Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[23] d'Humières D 1992 Prog. Aeronaut. Astronaut. 159 450
[24] Lallemand P and Luo L S 2000 Phys. Rev. E 61 6546
[25] Luo L S, Liao W, Chen X, Peng Y and Zhang W 2011 Phys. Rev. E 83 056710
[26] Li H B, Lu X Y, Fang H P and Qian Y H 2004 Phys. Rev. E 70 026701
[27] Wen B H, Li H B, Zhang C Y and Fang H P 2012 Phys. Rev. E 85 016704
[28] Qian Y H and Zhou Y 1998 Europhys. Lett. 42 359
[29] Wen B H, Zhang C Y, Tu Y S, Wang C L and Fang H P 2013 arXiv:1303.0625 [physics.flu-dyn]
[30] Fung Y C 1981 Biomechanics: Mechanical Properties of Living Tissues (New York: Springer Verlag)
[31] Lallemand P and Luo L S 2003 J. Comput. Phys. 184 406
[32] Zou Q S and He X Y 1997 Phys. Fluids 9 1591
Related articles from Frontiers Journals
[1] WANG Zheng-Dao, YANG Jian-Fei, WEI Yi-Kun, QIAN Yue-Hong. A New Extrapolation Treatment for Boundary Conditions in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2013, 30(9): 064701
[2] LIU Ming, CHEN Xiao-Peng, Kannan N. Premnath. Comparative Study of the Large Eddy Simulations with the Lattice Boltzmann Method Using the Wall-Adapting Local Eddy-Viscosity and Vreman Subgrid Scale Models[J]. Chin. Phys. Lett., 2012, 29(10): 064701
[3] NIE De-Ming, LIN Jian-Zhong, . Characteristics of Flow around an Impulsively Rotating Square Cylinder via LB-DF/FD Method[J]. Chin. Phys. Lett., 2010, 27(10): 064701
[4] GUO Xiao-Hui, LIN Jian-Zhong, NIE De-Ming. Vortex Structures and Behavior of a Flow Past Two Rotating Circular Cylinders Arranged Side-by-Side[J]. Chin. Phys. Lett., 2009, 26(8): 064701
[5] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 064701
[6] RAN Zheng. Thermo-Hydrodynamic Lattice BGK Schemes with Lie Symmetry Preservation[J]. Chin. Phys. Lett., 2008, 25(11): 064701
[7] KIM Dehee, KIM Hyung Min, JHON Myung S., VINAY III Stephen J., BUCHANAN John. A Characteristic Non-Reflecting Boundary Treatment in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(6): 064701
[8] RAN Zheng. Note on Invariance of One-Dimensional Lattice-Boltzmann Equation[J]. Chin. Phys. Lett., 2007, 24(12): 064701
Viewed
Full text


Abstract