Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 064702    DOI: 10.1088/0256-307X/30/6/064702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Direct Numerical Simulation of Chemical Non-equilibrium Turbulent Flow
CHEN Xiao-Ping1,2, LI Xin-Liang1**
1Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Beijing 100190
2School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Zhejiang 310018
Cite this article:   
CHEN Xiao-Ping, LI Xin-Liang 2013 Chin. Phys. Lett. 30 064702
Download: PDF(918KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Temporally evolving high-temperature turbulent channel flows (at Ma=6 and 10 and Re=12000) are performed by using direct numerical simulation with the assumption of local thermal equilibrium and chemical non-equilibrium. The turbulent statistical characteristics are studied. We find that the Morkovin theory for the Van Direst transformed velocity remains valid, while the compressibility effects need to be considered since the turbulent Mach number is high enough, especially for the higher Mach number case. The dissociation/recombination reactions are excited, which are proved by the mean temperature, mass fractions and specific heat ratio. The importance of the mean property variations is studied from the rms velocity and mass fraction fluctuations.

Received: 26 December 2012      by xhl Published: 31 May 2013
PACS:  47.27.E- (Turbulence simulation and modeling)  
  34.50.Lf (Chemical reactions)  
  47.40.Ki (Supersonic and hypersonic flows)  
  47.70.Nd (Nonequilibrium gas dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/064702       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/064702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Xiao-Ping
LI Xin-Liang

[1] Reed H 2009 RTO-EN-AVT-151 13. 1-13.15 (van Karman Institut, Rhode -Saint-Genese, Belgium)
[2] Anderson J D 2000 AIAA (New York)
[3] Martin M P 2003 AIAA Paper 03-4055
[4] Martin M P 2007 J. Fluid Mech. 570 347
[5] Martin M P and Candler G V 1998 Phys. Fluids 10 1715
[6] Martin M P and Candler G V 1999 Phys. Fluids 11 2765
[7] Duan L and Martin M P 2009 AIAA Paper 09-4040
[8] Duan L and Martin M P 2009 AIAA J. 47 244
[9] Duan L and Martin M P 2011 AIAA J. 49 172
[10] Duan L and Martin M P 2011 J. Fluid Mech. 684 25
[11] Marxen O, Iaccarino G and Shaqfeh E S G 2007 Annual Research Briefs (Center for Turbulence Research, Stanford University)
[12] Marxen O, Magin T, Iaccarino G and Shaqfeh E S G 2010 AIAA Paper 10-0707
[13] Chen X P, Li X L and Fan J 2011 Sin. Phys. Mech. Astron. 41 969 (in Chinese)
[14] Gupta R N, Yos J M, Thomspson R A and Lee K P 1990 NASA-1232
[15] Gnoffo P A, Gupta R N and Shinn J D 1989 NASA-TP-2867
[16] Barbante P F and Magin T E 2004 RTO-EN-AVT-116
[17] Park C 1985 AIAA Paper 85-0247
[18] Park C 2000 AIAA Paper 00-0210
[19] Park C 2001 J. Therm. Heat Transfer. 15 76
[20] Jiang G S and Shu C W 1996 J. Comput. Phys. 126 202
[21] Kyu H and Chonggam K 1998 AIAA Paper 98-2442
[22] Zhang Z S, Cui G X and Xu C X 2005 (Beijing: Tsinghua University Press) (in Chinese)
[23] White F M 1974 Viscous Fluid Flow (New York: McGraw-Hill)

Related articles from Frontiers Journals
[1] WANG Yan-Zhi, ZHANG Zhi-Xiong, SHI Yi-Peng, SHE Zhen-Su. Synthetic Turbulence Constructed by Self-Learning Fractal Interpolation[J]. Chin. Phys. Lett., 2012, 29(10): 064702
[2] YI Chao, LI Jing, LIU Zhao-Hui, WANG Lin, ZHENG Chu-Guang. Subgrid-Scale Fluid Statistics along the Inertial Particle Trajectory in Isotropic Turbulence[J]. Chin. Phys. Lett., 2012, 29(9): 064702
[3] YANG Wei, ZHOU Kun. A New Method of Simulating Fiber Suspensions and Applications to Channel Flows[J]. Chin. Phys. Lett., 2012, 29(6): 064702
[4] QIN Tong, GAO Peng, LIU Nan-Sheng, LU Xi-Yun. Turbulent Boundary Layer Control via a Streamwise Travelling Wave Induced by an External Force[J]. Chin. Phys. Lett., 2008, 25(10): 064702
Viewed
Full text


Abstract