GENERAL |
|
|
|
|
Decoherence of Superradiant Scattering from Atoms without Confinement |
WEN Ming-Xuan, NIU Lin-Xiao, WANG Zhong-Kai, ZHAI Yue-Yang, CHEN Xu-Zong, ZHOU Xiao-Ji** |
School of Electronics Engineering and Computer Science, Peking University, Beijing 100871
|
|
Cite this article: |
WEN Ming-Xuan, NIU Lin-Xiao, WANG Zhong-Kai et al 2013 Chin. Phys. Lett. 30 060304 |
|
|
Abstract We study the decoherence of superradiant Rayleigh scattering from condensed atoms without confinement, by using two same pumping pulses with an interval time. The first pulse is to establish a matter-wave grating, and the coherence between different momentum modes is measured by the second pulse after a variable interval time. Different from the case in the trap, the distruction of the grating owing to the phase perturbation is very fast, and the superradiant process is inhibited very soon afterwards for released atoms. A semi-classical model is applied to simulate this phase perturbation, and the calculation agrees with our experimental results.
|
|
Received: 01 April 2013
Published: 31 May 2013
|
|
PACS: |
03.75.Gg
|
(Entanglement and decoherence in Bose-Einstein condensates)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
32.80.-t
|
(Photoionization and excitation)
|
|
|
|
|
[1] Yoshikawa Y, Nakayama K, Torii Y and Kuga T 2007 Phys. Rev. Lett. 99 220407 [2] Inouye S, Chikkatur A P, Stamper-Kurn D M, Stenger J, Pritchard D E and Ketterle W 1999 Science 285 571 [3] Schneble D, Campbell G K, Streed E W, Boyd M, Pritchard D E and Ketterle W 2004 Phys. Rev. A 69 041601(R) [4] Yoshikawa Y, Torii Y and Kuga T 2005 Phys. Rev. Lett. 94 083602 [5] Deng L, Hagley E W, Cao Q, Wang X R, Luo X, Wang R Q, Payne M G, Yang F, Zhou X J, Chen X Z and Zhan M S 2010 Phys. Rev. Lett. 105 220404 [6] Kampel N S, Griesmaier A, Hornbak Steenstrup M P, Kaminski F, Polzik E S and Müller J H 2012 Phys. Rev. Lett. 108 090401 [7] Yang F, Zhou X J, Li J T, Chen Y K, Xia L and Chen X Z 2008 Phys. Rev. A 78 043611 [8] Schneble D, Torii Y, Boyd M, Streed E W, Pritchard D E and Ketterle W 2003 Science 300 475 [9] Kozuma M, Suzuki Y, Torii Y, Sugiura T, Kuga T, Hagley E W and Deng L 1999 Science 286 2309 [10] Zhou X J, Yang F, Yue X G, Vogt T and Chen X Z 2010 Phys. Rev. A 81 013615 [11] Lu B, Zhou X J, Vogt T, Fang Z and Chen X Z 2011 Phys. Rev. A 83 033620 [12] Ma X Q, Chen S, Yang F, Xia L, Zhou X J, Wang Y Q and Chen X Z 2005 Chin. Phys. Lett. 22 1106 [13] Moore M G and Meystre P 1999 Phys. Rev. Lett. 83 5202 [14] Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 82 4569 [15] Castin Y and Dum R 1996 Phys. Rev. Lett. 77 5315 [16] Sadler L E, Higbie J M, Leslie S R, Vengalattore M and Stamper-Kurn D M 2007 Phys. Rev. Lett. 98 110401 [17] Zobay O and Nikolopoulos G M 2005 Phys. Rev. A 72 041604(R) [18] Zobay O and Nikolopoulos G M 2006 Phys. Rev. A 73 013620 [19] Chen Y K, Zhou X J, Yang F and Chen X Z 2008 Chin. Phys. Lett. 25 42 [20] Campbell G K, Leanhardt A E, Mun J, Boyd M, Streed E W, Ketterle W and Pritchard D E 2005 Phys. Rev. Lett. 94 170403 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|