Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 060303    DOI: 10.1088/0256-307X/30/6/060303
GENERAL |
Collective Excitations of a Dipolar Bose–Einstein Condensate in an Anharmonic Trap
QI Wei**, LIANG Zhao-Xin, ZHANG Zhi-Dong
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article:   
QI Wei, LIANG Zhao-Xin, ZHANG Zhi-Dong 2013 Chin. Phys. Lett. 30 060303
Download: PDF(688KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The collective excitations of a one-dimensional dipolar Bose–Einstein condensate trapped in an anharmonic potential are investigated theoretically. Using the variational approach, we obtain the coupled equations of motion for the center-of-mass coordinate of the condensate and its width. In particular, analytical expressions for the low-lying excitation modes are given. The results show that dipole-dipole interactions reduce the frequency shift induced by quartic distortion. The interplay between dipole-dipole interactions and anharmonic distortion for the collapse and revival of the collective excitations originating from the nonlinear coupling between the two modes are also discussed.
Received: 02 April 2013      Published: 31 May 2013
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  67.10.Fj (Quantum statistical theory)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/060303       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/060303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QI Wei
LIANG Zhao-Xin
ZHANG Zhi-Dong
[1] Pitaevskii L and Stringari S 2003 Bose–Einstein Condensation (Oxford: Oxford University)
[2] Griesmaier A et al 2005 Phys. Rev. Lett. 94 160401
[3] Lahaye T et al 2009 Rep. Prog. Phys. 72 126401
[4] Citro R et al 2007 Phys. Rev. A 75 051602
[5] Astrakharchik G E and Lozovik Y E 2008 Phys. Rev. A 77 013404
[6] Góral K et al 2002 Phys. Rev. Lett. 88 170406
[7] Pu H et al 2001 Phys. Rev. Lett. 87 140405
[8] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[9] Rabl P and Zoller P 2007 Phys. Rev. A 76 042308
[10] Stringari S 1996 Phys. Rev. Lett. 77 2360
[11] Jin D S et al 1996 Phys. Rev. Lett. 77 420
[12] Mewes M O et al 1996 Phys. Rev. Lett. 77 988
[13] Pérez-García V M et al 1996 Phys. Rev. Lett. 77 5320
[14] G?rlitz A et al 2001 Phys. Rev. Lett. 87 130402
[15] Bismut G et al 2010 Phys. Rev. Lett. 105 040404
[16] Muruganandam P and Adhikari S K 2012 Laser Phys. 22 813
[17] Koch T et al 2008 Nat. Phys. 4 218
[18] Lahaye T et al 2007 Nature 448 672
[19] Bretin V et al 2004 Phys. Rev. Lett. 92 050403
[20] Li G Q et al 2006 Phys. Rev. A 74 055601
[21] Yang L et al 2009 Chin. Phys. Lett. 26 076701
Related articles from Frontiers Journals
[1] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 060303
[2] Cong Liu, Junjie Wang, Xin Deng, Xiaomeng Wang, Chris J. Pickard, Ravit Helled, Zhongqing Wu, Hui-Tian Wang, Dingyu Xing, and Jian Sun. Partially Diffusive Helium-Silica Compound under High Pressure[J]. Chin. Phys. Lett., 2022, 39(7): 060303
[3] Fan Zhang and Lan Yin. Phonon Stability of Quantum Droplets in Dipolar Bose Gases[J]. Chin. Phys. Lett., 2022, 39(6): 060303
[4] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 060303
[5] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 060303
[6] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 060303
[7] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 060303
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 060303
[9] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 060303
[10] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 060303
[11] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 060303
[12] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 060303
[13] WANG Long, YU Zi-Fa, XUE Ju-Kui. The Coherence of a Dipolar Condensate in a Harmonic Potential Superimposed to a Deep Lattice[J]. Chin. Phys. Lett., 2015, 32(06): 060303
[14] ZHANG Xiu-Ming, TIAN Chi. Effect of the Minimal Length on Bose–Einstein Condensation in the Relativistic Ideal Bose Gas[J]. Chin. Phys. Lett., 2015, 32(01): 060303
[15] XUE Rui, LI Wei-Dong, LIANG Zhao-Xin. Collective Excitation and Quantum Depletion of a Bose–Einstein Condensate in a Periodic Array of Quantum Wells[J]. Chin. Phys. Lett., 2014, 31(03): 060303
Viewed
Full text


Abstract