Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 040601    DOI: 10.1088/0256-307X/30/4/040601
GENERAL |
A Potassium Atom Four-Level Active Optical Clock Scheme
ZHANG Sheng-Nan, WANG Yan-Fei, ZHANG Tong-Gang, ZHUANG Wei**, CHEN Jing-Biao
Institute of Quantum Electronics and State Key Laboratory of Advanced Optical Communication and System Network, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871
Cite this article:   
ZHANG Sheng-Nan, WANG Yan-Fei, ZHANG Tong-Gang et al  2013 Chin. Phys. Lett. 30 040601
Download: PDF(522KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an active optical clock scheme with a four-level quantum potassium system. We calculate the population probabilities of each state using the density matrix. At the steady state, ρ33 and ρ55 are equal to 8.3% and 3.5%, respectively, and the population inversion between the 5S1/2 and 4P3/2 states is built up in the thermal potassium cell with a 404.7 nm pumping laser. According to the mechanism of the active optical clock, under the action of the 404.7 nm pumping laser, the scheme can output a 1252.2 nm quantum-limited-linewidth laser, which can be directly used as an active optical frequency standard.
Received: 18 December 2012      Published: 28 April 2013
PACS:  06.30.Ft (Time and frequency)  
  32.30.-r (Atomic spectra?)  
  42.62.-b (Laser applications)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/040601       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/040601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Sheng-Nan
WANG Yan-Fei
ZHANG Tong-Gang
ZHUANG Wei
CHEN Jing-Biao
[1] Bize S, Diddams S A, Tanaka U, Tanner C E, Oskay W H, Drullinger R E, Parker T E, Heavner T P, Jefferts S R, Hollberg L, Itano W M and Bergquist J C 2003 Phys. Rev. Lett. 90 150802
[2] Takamoto M, Hong F, Higashi R, Katori H 2005 Nature 435 321
[3] Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M and Ye J 2008 Phys. Rev. Lett. 100 140801
[4] Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630
[5] Rafac R J, Young B C, Beall J A, Itano W M, Wineland D J and Bergquist J C 2000 Phys. Rev. Lett. 85 2462
[6] Sterr U, Degenhardt C, Stoehr H, Lisdat C, Schnatz H, Helmcke J, Riehle F, Wilpers G, Oates C and Hollberg L 2004 C. Rendus Phys. 5 845
[7] Gill P 2005 Metrologia 42 S125
[8] Takamoto M, Hong F, Higashi R, Katori H 2005 Nature 435 321
[9] Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630
[10] Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L and Oates C W 2011 Nat. Photon. 3 158
[11] Katori H 2011 Nat. Photon. 5 203
[12] Swallowset M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M and Ye J 2011 Science 331 1043
[13] Yu D and Chen J 2007 Phys. Rev. Lett. 98 050801
[14] Young B C, Cruz F C, Itano W M and Bergquist J C 1999 Phys. Rev. Lett. 82 3799
[15] Numata K, Kemery A and Camp J 2004 Phys. Rev. Lett. 93 250602
[16] Chen J and Chen X 2005 Proceedings of International Frequency Control Symposium (IEEE Vancouver BC 2005) p 608
[17] Chen J 2009 Chin. Sci. Bull. 54 348
[18] Zhuang W, Yu D and Chen J 2006 Proceedings of International Frequency Control Symposium (IEEE Miami Florida USA BC 2006) p 277
[19] Zhuang W, Yu D, Chen Z, Huang K and Chen J 2007 Proceedings of European Frequency and Time Forum – IEEE International Frequency Control Symposium Geneva Switzerland p 96
[20] Yu D and Chen J 2008 Phys. Rev. A 78 013846
[21] Wang Y 2009 Chin. Sci. Bull. 54 347
[22] Meiser D, Ye J, Carlson D R and Holland M J 2009 Phys. Rev. Lett. 102 163601
[23] Sterr U and Lisdat C 2009 Nat. Phys. 5 382
[24] Meiser D and Holland M J 2010 Phys. Rev. A 81 033847
[25] Zhuang W and Chen J 2010 Proceedings of International Frequency Control Symposium (IEEE USA BC) p 222
[26] Xie X, Zhuang W and Chen J 2010 Chin. Phys. Lett. 27 074202
[27] Zhuang W and Chen J 2011 Chin. Phys. Lett. 28 080601
[28] Zhuang W, Zhang T and Chen J 2011 arXiv:1111.4704v1 [physics.atom-ph]
[29] Zhang T, Wang Y, Zang X, Zhuang W and Chen J 2012 arXiv:1204.4385v1 [physics.atom-ph]
[30] Wang Y, Wang D, Zhang T, Hong Y, Zhang S, Tao Z, Xie X and Chen J 2013 Sci. Chin. Phys. Mech. Astron. (accepted)
[31] Wang Y, Xue X, Wang D, Zhang T, Sun Q, Hong Y, Zhuang W and Chen J 2012 Proceedings of International Frequency Control Symposium (IEEE Baltimore BC)
[32] Zang X, Zhang T and Chen J 2012 Chin. Phys. Lett. 29 090601
[33] Weiner J M, Cox K C, Bohnet J G, Chen Z and Thompson J K 2012 arXiv:1210.3663v1 [physics.atom-ph]
[34] Bohnet J G, Chen Z, Weiner J M, Meiser D, Holland M J and Thompson J K 2012 Nature 484 78
[35] Kazakov G A and Schumm T 2012 arXiv:1210.5942v1 [physics.optics-ph]
[36] Schawlow A L and Townes C H 1958 Phys. Rev. 112 1940
[37] An K and Feld Mi S 1997 Phys. Rev. A 56 1662
[38] An K and Korean J 2003 J. Korean Phys. Soc. 42 505
[39] Haynes and William M 2010 Handbook of chemistry and physics (England: CRC Taylor and Francis Group) p 4
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 040601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 040601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 040601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 040601
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 040601
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 040601
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 040601
[8] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 040601
[9] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 040601
[10] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 040601
[11] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 040601
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 040601
[13] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 040601
[14] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 040601
[15] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 040601
Viewed
Full text


Abstract