Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 040502    DOI: 10.1088/0256-307X/30/4/040502
GENERAL |
Generalized Chaos Synchronization of Bidirectional Arrays of Discrete Systems
ZANG Hong-Yan1**, MIN Le-Quan1, ZHAO Geng2, CHEN Guan-Rong3
1School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083
2Department of Computer Science and Technology, Beijing Electronic Science and Technology Institute, Beijing 100070
3Department of Electronic Engineering, City University of Hong Kong, Hong Kong
Cite this article:   
ZANG Hong-Yan, MIN Le-Quan, ZHAO Geng et al  2013 Chin. Phys. Lett. 30 040502
Download: PDF(1465KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study constructive generalized synchronization (GS) for bidirectional discrete arrays of difference systems (BDADSs). The result provides a general representation of GS in BDADSs. Numerical simulations are presented to show the effectiveness of the theoretical results.
Received: 25 December 2012      Published: 28 April 2013
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/040502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/040502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZANG Hong-Yan
MIN Le-Quan
ZHAO Geng
CHEN Guan-Rong
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Wu C W and Chua L O 1993 Int. J. Bifurcation Chaos Appl. Sci. Eng. 3 1619
[3] Yang T and Chua L O 1996 Int. J. Bifurcation Chaos Appl. Sci. Eng. 6 2653
[4] Zhang S H and Shen K 2002 Chin. Phys. 11 894
[5] Murali K and Laskshmanan M 1998 Phys. Lett. A 241 303
[6] Yang T and Chua L O 1999 Int. J. Bifurcation Chaos Appl. Sci. Eng. 9 215
[7] Chee C Y and Xu D L 2006 Phys. Lett. A 348 284
[8] Li Y, Li B and Chen Y 2009 Chin. Phys. Lett. 26 040504
[9] Ahn C K and Choon K A 2011 Chin. Phys. Lett. 28 100504
[10] Chen F, Xia L and Li C G 2012 Chin. Phys. Lett. 29 070501
[11] Ji Y, Liu T and Min L Q 2008 Phys. Lett. A 372 3645
[12] Deng K, Huang R H and Kuang J Y 2001 Acta Phys. Sin. 10 1856 (in Chinese)
[13] Liu Z R and Chen G R 2003 Chaos Solitons Fractals 18 785
[14] Chen H K 2005 Chaos Solitons Fractals 23 1245
[15] Lü J H, Yu X H and Chen G R 2004 Physica A 334 281
[16] Wu J S and Jiao L C 2008 Physica D 337 2478
[17] Min L Q and Zang H Y 2009 Proceedings of 2009 International Confence on Communication, Circuit and Systems I p 599
[18] Spropt J G 2003 Chaos and Time-Series Analysis (Oxford: Oxford University Press)
[19] Miranda R and Stone E 1993 Phys. Lett. A 178 105
[20] Lü J H and Chen G R 2006 Int. J. Bifurcation Chaos Appl. Sci. Eng. 16 775
[21] Zhang X D and Min L Q 2000 J. Univ. Sci. Tech. Beijing 7 225
[22] Zang H Y and Min L Q and Zhao G 2007 Proceedings of 2007 International Confence on Communication, Circuit and Systems II p 1325
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 040502
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 040502
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 040502
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 040502
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 040502
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 040502
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 040502
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 040502
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 040502
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 040502
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 040502
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 040502
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 040502
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 040502
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 040502
Viewed
Full text


Abstract