Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 040304    DOI: 10.1088/0256-307X/30/4/040304
GENERAL |
Long-Lived Rogue Waves and Inelastic Interaction in Binary Mixtures of Bose–Einstein Condensates
LIU Chong1, YANG Zhan-Ying1**, ZHAO Li-Chen2,3, YANG Wen-Li4, YUE Rui-Hong5
1Department of Physics, Northwest University, Xi'an 710069
2Science and Technology Computation Physics Laboratory, Institute of Applied Physics and Computational Mathematics, Beijing 100088
3Department of Modern Physics, University of Science and Technology of China, Hefei 230026
4Institute of Modern Physics, Northwest University, Xi'an 710069
5Faculty of Science, Ningbo University, Ningbo 315211
Cite this article:   
LIU Chong, YANG Zhan-Ying, ZHAO Li-Chen et al  2013 Chin. Phys. Lett. 30 040304
Download: PDF(984KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate bright, dark and two rogue waves in two-component Bose–Einstein condensates. It is found that one rogue wave of a new structure that contains two humps and two valleys around one center in the temporal-spatial distribution interacts with the conventional rogue wave. We present an effective way to obtain long-lived rogue waves through managing the nonlinear interaction with modulating trapping frequency and interchange atoms between thermal clouds and condensates. The results provide many possibilities to manipulate rogue waves experimentally in the condensate system.
Received: 18 January 2013      Published: 28 April 2013
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/040304       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/040304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Chong
YANG Zhan-Ying
ZHAO Li-Chen
YANG Wen-Li
YUE Rui-Hong
[1] Osborne A R, Onorato M and Serio M 2000 Phys. Lett. A 275 386
[2] Kharif C and Pelinovsky E 2003 Eur. J. Mech. B 22 603
[3] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[4] Voronovich V V, Shrira V I and Thomas G 2008 J. Fluid Mech. 604 263
[5] Ankiewicz A, Soto-Crespo J M and Akhmediev N 2010 Phys. Rev. E 81 046602
Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[6] Bludov Y V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 033610
[7] Kibler B et al 2010 Nat. Phys. 6 790
[8] Solli D R et al 2007 Nature 450 1054
[9] Chabchoub A, Hoffmann N P and Akhmediev N 2011 Phys. Rev. Lett. 106 204502
[10] Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119
[11] Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
[12] Baronio F et al 2012 Phys. Rev. Lett. 109 044102
[13] Bludov Y V, Konotop V V and Akhmediev N 2010 Eur. Phys. J. Spec. Top. 185 169
[14] Yan Z Y 2011 Phys. Lett. A 375 4274
[15] Zhao L C, He S L 2011 Phys. Lett. A 375 3017
Liu X X et al 2010 Chin. Phys. Lett. 27 070306
[16] Ohta Y and Yang J 2012 Phys. Rev. E 86 036604
[17] Zhao L C and Liu J 2013 Phys. Rev. E 87 013201
[18] Degasperis A et al 2006 Phys. Rev. Lett. 97 093901
[19] Aleahmad P et al 2012 Phys. Rev. Lett. 109 203902
Related articles from Frontiers Journals
[1] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 040304
[2] Cong Liu, Junjie Wang, Xin Deng, Xiaomeng Wang, Chris J. Pickard, Ravit Helled, Zhongqing Wu, Hui-Tian Wang, Dingyu Xing, and Jian Sun. Partially Diffusive Helium-Silica Compound under High Pressure[J]. Chin. Phys. Lett., 2022, 39(7): 040304
[3] Fan Zhang and Lan Yin. Phonon Stability of Quantum Droplets in Dipolar Bose Gases[J]. Chin. Phys. Lett., 2022, 39(6): 040304
[4] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 040304
[5] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 040304
[6] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 040304
[7] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 040304
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 040304
[9] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 040304
[10] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 040304
[11] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 040304
[12] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 040304
[13] WANG Long, YU Zi-Fa, XUE Ju-Kui. The Coherence of a Dipolar Condensate in a Harmonic Potential Superimposed to a Deep Lattice[J]. Chin. Phys. Lett., 2015, 32(06): 040304
[14] ZHANG Xiu-Ming, TIAN Chi. Effect of the Minimal Length on Bose–Einstein Condensation in the Relativistic Ideal Bose Gas[J]. Chin. Phys. Lett., 2015, 32(01): 040304
[15] XUE Rui, LI Wei-Dong, LIANG Zhao-Xin. Collective Excitation and Quantum Depletion of a Bose–Einstein Condensate in a Periodic Array of Quantum Wells[J]. Chin. Phys. Lett., 2014, 31(03): 040304
Viewed
Full text


Abstract