Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 040303    DOI: 10.1088/0256-307X/30/4/040303
GENERAL |
Exact Vortex Clusters of Two-Dimensional Quantum Fluid with Harmonic Confinement
CHONG Gui-Shu1**, ZHANG Ling-Ling1, HAI Wen-Hua2
1School of Physics and Microelectronics, Hunan University, Changsha 410082
2Department of Physics and Key Laboratory of Low-Dimensional Quantum Structure and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081
Cite this article:   
CHONG Gui-Shu, ZHANG Ling-Ling, HAI Wen-Hua 2013 Chin. Phys. Lett. 30 040303
Download: PDF(583KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A family of exact analytical solutions of vortices in quantum fluid governed by a two-dimensional time-dependent Schr?dinger equation is presented, which describes different kinds of vortex structures. The dynamics of different vortex clusters, such as the single vortex, vortex pair, vortex dipole and vortex trimer in a two-dimensional quantum fluid are analytically studied based on these exact solutions. The time evolutions of the wave of such vortices are demonstrated, and the orbits of motion of singular points in the vortices are also explored. The interactions of vortices in many-vortex clusters are discussed. A repulsive interaction between vortices with the same topological charge, and inter-annihilation and inter-creation of vortices with opposite topological charge, are shown.
Received: 25 December 2012      Published: 28 April 2013
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  67.10.Jn (Transport properties and hydrodynamics)  
  67.10.Hk (Quantum effects on the structure and dynamics of non-degenerate fluids)  
  47.32.C- (Vortex dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/040303       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/040303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHONG Gui-Shu
ZHANG Ling-Ling
HAI Wen-Hua
[1] Vilenkin A and Shellard E P S 1994 Cosmic Strings and Other Topological Defects (Cambridge: Cambridge University Press)
[2] Anderson P W and Itoh N 1975 Nature 256 25
[3] Blum T and Moore M A 1995 Phys. Rev. B 51 15359
[4] Swartzlander G A and Law C T 1992 Phys. Rev. Lett. 69 2503
[5] Madelung E 1927 Z. Phys. 40 322
[6] Wyatt R E 2005 Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (New York: Springer )
[7] Donnelly R J 1991 Quantized Vortices in Helium II (Cambridge: Cambridge University Press )
[8] Vollhardt D and W?lfle P 1990 Superfuid Phase Helium III (London: Taylor and Francis)
[9] Parks R D 1969 Superconductivity (New York: Marcel Dekker)
[10] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
[11] Madison K W, Chevy F, Wohlleben W and DalibardJ 2000 Phys. Rev. Lett. 84 806
[12] Anderson B P, Haljan P C, Wieman C E and Cornell E A 2000 Phys. Rev. Lett. 85 2857
[13] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292 476
[14] Coddington I, Engels P, Schweikhard V and Cornell E A 2003 Phys. Rev. Lett. 91 100402
[15] Mateveenko S I 2010 Phys. Rev. A 82 033628
[16] Middelkamp S, Kevrekidis P G, Frantzeskakis D J, Carretero-González R and Schmelcher P 2010 Phys. Rev. A 82 013646
[17] Neely T W, Samson E C, Bradley A S, Davis M J and Anderson B P 2010 Phys. Rev. Lett. 104 160401
[18] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 J. Mod. Opt. 47 2715
[19] Ramman C, Abo-Shaeer J R, Vogels J M, Xu K and Ketterle W 2001 Phys. Rev. Lett. 87 210402
[20] Leanhardt A E, G?rlitz A, Cikkatur A P, Kielpinski D, Shin Y, Pritchard D E and Ketterle W 2002 Phys. Rev. Lett. 89 190403
[21] Xiong H, Si L, Ding C, Lü X, Yang X and Wu Y 2012 Phys. Rev. E 85 016602
[22] Fetter A L 1966 Phys. Rev. 151 100
[23] Fetter A L 1976 in The Physics of Liquid and SolidHelium ed Bennemann K H and Ketterson J B (New York: Wiley) part 1
[24] Klein A, Jaksch D, Zhang Y and Bao W 2007 Phys. Rev. A 76 043602
[25] Aranson I S, Bishop A R and Kramer L 1998 Phys. Rev. E 57 5276
[26] Chong G, Hai W and Xie Q 2003 Chin. Phys. Lett. 20 2098
[27] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
Lettgett A J 2001 Rev. Mod. Phys. 73 307(and references there in)
[28] Hai W, Lee C and Chong G 2004 Phys. Rev. A 70 053621
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 040303
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 040303
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 040303
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 040303
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 040303
[6] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 040303
[7] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 040303
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 040303
[9] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 040303
[10] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 040303
[11] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 040303
[12] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 040303
[13] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 040303
[14] Zheng Zhou, Hong-Hua Zhong, Bo Zhu, Fa-Xin Xiao, Ke Zhu, Jin-Tao Tan. Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(11): 040303
[15] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 040303
Viewed
Full text


Abstract