Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 037503    DOI: 10.1088/0256-307X/30/3/037503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin-Peierls Instability in the Ferromagnetic Heisenberg Ladder
XU Yin-Jie1, ZHAO Hui1**, CHEN Yu-Guang1, YAN Yong-Hong2
1Key Laboratory for Advanced Microstructure Materials of the Ministry of Education and Department of Physics, Tongji University, Shanghai 200092
2Department of Physics, Shaoxing University, Shaoxing 312000
Cite this article:   
XU Yin-Jie, ZHAO Hui, CHEN Yu-Guang et al  2013 Chin. Phys. Lett. 30 037503
Download: PDF(639KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A two-leg S=1/2 spin ladder with ferromagnetic rung coupling is investigated to reveal the phase transition between the Haldane and columnar dimer phase. The elastic lattice with the elastic force K is introduced into the system, which induces unstable spin chains towards the spontaneous dimerization. When the rung coupling is strong enough, the dimerization along the legs is suppressed and the spin ladder undergoes a phase transition. The dimerization amplitude is calculated self-consistently by the density-matrix renormalization group method. To determine the phase transition boundary, the spin gap, the columnar dimer order parameter and the block-block entanglement entropy are calculated. Our results show that the phase boundary between the columnar dimer phase and Haldane phase follows the power law Jt~K.
Received: 21 September 2012      Published: 29 March 2013
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.10.Pq (Spin chain models)  
  75.40.Mg (Numerical simulation studies)  
  75.50.Ee (Antiferromagnetics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/037503       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/037503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Yin-Jie
ZHAO Hui
CHEN Yu-Guang
YAN Yong-Hong
[1] Azuma M, Hiroi Z, Takano M, Ishida K and Kitaoka Y 1994 Phys. Rev. Lett. 73 3463
[2] White S R, Noack R M and Scalapino D J 1994 Phys. Rev. Lett. 73 886
[3] Greven M, Birgeneau R J and Wiese U J 1996 Phys. Rev. Lett. 77 1865
[4] Allen D, Essler F H L and Nersesyan A A 2000 Phys. Rev. B 61 8871
[5] Wang X Q 2000 Mod. Phys. Lett. B 14 327
[6] Zheng W H, Kotov V and Oitmaa J 1998 Phys. Rev. B 57 11439
[7] Starykh O A and Balents L 2004 Phys. Rev. Lett. 93 127202
[8] Zhu N, Wang X and hen C 2000 Phys. Rev. B 63 012401
[9] Vekua T and Honecker A 2006 Phys. Rev. B 73 214427
[10] Hung H H, Gong C D, Chen Y C and Yang M F 2006 Phys. Rev. B 73 224433
[11] Kim E H, Legeza O and Solyom J 2008 Phys. Rev. B 77 205121
[12] Liu G H, Wang H L and Tian G S 2008 Phys. Rev. B 77 214418
[13] Barcza G, Legeza O, Noack R M and Solyom J 2012 Phys. Rev. B 86 075133
[14] Hikihara T and Starykh O A 2010 Phys. Rev. B 81 064432
[15] Liu G H, Deng X Y and Wen R 2011 Solid State Commun. 151 22 1716
[16] Almeida J, Martin-Delgado M A and Sierra G 2007 Phys. Rev. B 76 184428
[17] Feiguin A E, Riera J A, Dobry A and Ceccatto H A 1997 Phys. Rev. B 56 14607
[18] White S R 1992 Phys. Rev. Lett. 69 2863
[19] White S R 1993 Phys. Rev. B 48 10345
[20] Bulla R, Costi T and Pruschke T 2008 Rev. Mod. Phys. 80 395
[21] Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402
[22] Vidal J, Palacios G and Mosseri R 2004 Phys. Rev. A 69 022107
[23] Vidal J, Mosseri R and Dukelsky J 2004 Phys. Rev. A 69 054101
[24] Yang M F 2005 Phys. Rev. A 71 030302(R)
[25] Legeza O and Solyom J 2006 Phys. Rev. Lett. 96 116401
[26] Legeza O, Solyom J, Tincani L and Noack R M 2007 Phys. Rev. Lett. 99 087203
[27] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[28] Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404
[29] Molina R A and Schmitteckert P 2007 Phys. Rev. B 75 235104
[30] Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781
Related articles from Frontiers Journals
[1] Zhi-Xuan Li, Shuai Yin, and Yu-Rong Shu. Imaginary-Time Quantum Relaxation Critical Dynamics with Semi-Ordered Initial States[J]. Chin. Phys. Lett., 2023, 40(3): 037503
[2] Kai-Yue Zeng, Fang-Yuan Song, Lang-Sheng Ling, Wei Tong, Shi-Liang Li, Zhao-Ming Tian, Long Ma, and Li Pi. Incommensurate Magnetic Order in Sm$_3$BWO$_9$ with Distorted Kagome Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 037503
[3] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 037503
[4] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 037503
[5] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 037503
[6] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 037503
[7] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 037503
[8] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 037503
[9] Ren-Gui Zhu. Classical Ground State Spin Ordering of the Antiferromagnetic $J_1$–$J_2$ Model[J]. Chin. Phys. Lett., 2019, 36(6): 037503
[10] Erhan Albayrak. The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach[J]. Chin. Phys. Lett., 2018, 35(3): 037503
[11] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 037503
[12] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 037503
[13] DAI Jia, WANG Peng-Shuai, SUN Shan-Shan, PANG Fei, ZHANG Jin-Shan, DONG Xiao-Li, YUE Gen, JIN Kui, CONG Jun-Zhuang, Sun Yang, YU Wei-Qiang. Nuclear-Magnetic-Resonance Properties of the Staircase Kagomé Antiferromagnet $PbCu_3TeO_7$[J]. Chin. Phys. Lett., 2015, 32(12): 037503
[14] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 037503
[15] LI Da-Chuang, LI Xiao-Man, LI Hu, TAO Rui, YANG Ming, CAO Zhuo-Liang. Thermal Entanglement in the Pure Dzyaloshinskii–Moriya Model with Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(5): 037503
Viewed
Full text


Abstract