CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Spin-Peierls Instability in the Ferromagnetic Heisenberg Ladder |
XU Yin-Jie1, ZHAO Hui1**, CHEN Yu-Guang1, YAN Yong-Hong2 |
1Key Laboratory for Advanced Microstructure Materials of the Ministry of Education and Department of Physics, Tongji University, Shanghai 200092 2Department of Physics, Shaoxing University, Shaoxing 312000
|
|
Cite this article: |
XU Yin-Jie, ZHAO Hui, CHEN Yu-Guang et al 2013 Chin. Phys. Lett. 30 037503 |
|
|
Abstract A two-leg S=1/2 spin ladder with ferromagnetic rung coupling is investigated to reveal the phase transition between the Haldane and columnar dimer phase. The elastic lattice with the elastic force K is introduced into the system, which induces unstable spin chains towards the spontaneous dimerization. When the rung coupling is strong enough, the dimerization along the legs is suppressed and the spin ladder undergoes a phase transition. The dimerization amplitude is calculated self-consistently by the density-matrix renormalization group method. To determine the phase transition boundary, the spin gap, the columnar dimer order parameter and the block-block entanglement entropy are calculated. Our results show that the phase boundary between the columnar dimer phase and Haldane phase follows the power law Jt~K?α.
|
|
Received: 21 September 2012
Published: 29 March 2013
|
|
PACS: |
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.10.Pq
|
(Spin chain models)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
|
|
|
[1] Azuma M, Hiroi Z, Takano M, Ishida K and Kitaoka Y 1994 Phys. Rev. Lett. 73 3463 [2] White S R, Noack R M and Scalapino D J 1994 Phys. Rev. Lett. 73 886 [3] Greven M, Birgeneau R J and Wiese U J 1996 Phys. Rev. Lett. 77 1865 [4] Allen D, Essler F H L and Nersesyan A A 2000 Phys. Rev. B 61 8871 [5] Wang X Q 2000 Mod. Phys. Lett. B 14 327 [6] Zheng W H, Kotov V and Oitmaa J 1998 Phys. Rev. B 57 11439 [7] Starykh O A and Balents L 2004 Phys. Rev. Lett. 93 127202 [8] Zhu N, Wang X and hen C 2000 Phys. Rev. B 63 012401 [9] Vekua T and Honecker A 2006 Phys. Rev. B 73 214427 [10] Hung H H, Gong C D, Chen Y C and Yang M F 2006 Phys. Rev. B 73 224433 [11] Kim E H, Legeza O and Solyom J 2008 Phys. Rev. B 77 205121 [12] Liu G H, Wang H L and Tian G S 2008 Phys. Rev. B 77 214418 [13] Barcza G, Legeza O, Noack R M and Solyom J 2012 Phys. Rev. B 86 075133 [14] Hikihara T and Starykh O A 2010 Phys. Rev. B 81 064432 [15] Liu G H, Deng X Y and Wen R 2011 Solid State Commun. 151 22 1716 [16] Almeida J, Martin-Delgado M A and Sierra G 2007 Phys. Rev. B 76 184428 [17] Feiguin A E, Riera J A, Dobry A and Ceccatto H A 1997 Phys. Rev. B 56 14607 [18] White S R 1992 Phys. Rev. Lett. 69 2863 [19] White S R 1993 Phys. Rev. B 48 10345 [20] Bulla R, Costi T and Pruschke T 2008 Rev. Mod. Phys. 80 395 [21] Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402 [22] Vidal J, Palacios G and Mosseri R 2004 Phys. Rev. A 69 022107 [23] Vidal J, Mosseri R and Dukelsky J 2004 Phys. Rev. A 69 054101 [24] Yang M F 2005 Phys. Rev. A 71 030302(R) [25] Legeza O and Solyom J 2006 Phys. Rev. Lett. 96 116401 [26] Legeza O, Solyom J, Tincani L and Noack R M 2007 Phys. Rev. Lett. 99 087203 [27] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [28] Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404 [29] Molina R A and Schmitteckert P 2007 Phys. Rev. B 75 235104 [30] Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|