Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 037502    DOI: 10.1088/0256-307X/30/3/037502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Synthesis and Magnetotransport Properties of CrO2-TiO2 Composites
FAN Yin-Bo1, ZHANG Cai-Ping1, DU Xiao-Bo2, WEN Ge-Hui1**, MA Hong-An1, JIA Xiao-Peng1
1State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012
2College of Physics, Jilin University, Changchun 130012
Cite this article:   
FAN Yin-Bo, ZHANG Cai-Ping, DU Xiao-Bo et al  2013 Chin. Phys. Lett. 30 037502
Download: PDF(1250KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract CrO2-TiO2 composites are synthesized by using a high temperature and high pressure method using CrO3 and H2TiO3 as precursors. The composites consist of large rod-like CrO2 crystals separated by small TiO2 grains. The CrO2 in the composites is very pure and its saturation magnetization is very close to the theoretical value (i.e., 2μB per formula unit). The composites exhibit a large negative magnetoresistance (MR) at 5 K. The MR in CrO2-TiO2 composites is mainly attributed to spin-polarized tunneling between CrO2 crystals. The conductivity of the composites is best described by a fluctuation-induced tunneling model below 230 K.
Received: 20 September 2012      Published: 29 March 2013
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  73.43.Qt (Magnetoresistance)  
  72.80.Tm (Composite materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/037502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/037502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Yin-Bo
ZHANG Cai-Ping
DU Xiao-Bo
WEN Ge-Hui
MA Hong-An
JIA Xiao-Peng
[1] Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211
[2] K ?mper K P et al 1987 Phys. Rev. Lett. 59 2788
[3] Ji Y et al 2001 Phys. Rev. Lett. 86 5585
[4] Jr R J S et al 1998 Science 282 85
[5] Moodera J S et al 1995 Phys. Rev. Lett. 74 3273
[6] Miao G X et al 2006 Appl. Phys. Lett. 89 022511
[7] Leo T et al 2007 Appl. Phys. Lett. 91 252506
[8] Coey J M D et al 1998 Phys. Rev. Lett. 80 3815
[9] Chen Y J et al 2003 Mater. Lett. 58 262
[10] Chen Y J, Zhang X Y and Li Z Y 2003 Chem. Phys. Lett. 375 213
[11] Dai J and Tang J 2001 Phys. Rev. B 63 054434
[12] Dai J and Tang J 2001 J. Appl. Phys. 89 6763
[13] Ju S and Li Z Y 2002 Phys. Lett. A 293 199
[14] Manoharan S S et al 2002 J. Appl. Phys. 91 7923
[15] Chen Y J et al 2003 Chin. Phys. Lett. 20 721
[16] Chen Y J, Zhang X Y and Li Z Y 2003 Chin. Phys. Lett. 20 1578
[17] Ding B J, Ju S and Li Z Y 2006 Phys. Lett. A 353 349
[18] Belevtsev B I et al 2009 J. Alloys Compd. 479 11
[19] Liu H et al 2005 Phys. Status Solidi A 202 144
[20] Nie Y et al 2006 Acta Phys. Sin. 55 3038 (in Chinese)
[21] Bajpai A and Nigam A K 2007 J. Appl. Phys. 101 103911
[22] Zhao Q et al 2010 Mater. Lett. 64 592
[23] Zhou L et al 2009 Chin. Phys. B 18 333
[24] Ma H A et al 2002 J. Phys.: Condens. Matter 14 11269
[25] Raychaudhuri P et al 1999 Phys. Rev. B 59 13919
[26] Fisher B et al 2005 Phys. Rev. B 71 104428
[27] Bajpai A and Nigam A K 2007 Phys. Rev. B 75 064403
[28] Sheng P, Sichel E and Gittleman J I 1978 Phys. Rev. Lett. 40 1197
[29] Sheng P 1980 Phys. Rev. B 21 2180
[30] Kim H M et al 2006 Phys. Rev. B 74 054202
[31] Xu Y, Ephron D and Beasley M R 1995 Phys. Rev. B 52 2843
[32] Dai J and Tang J 2001 Phys. Rev. B 63 064410
Related articles from Frontiers Journals
[1] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 037502
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 037502
[3] Honglei Feng, Yong Li, Youguo Shi, Hong-Yi Xie, Yongqing Li, and Yang Xu. Resistance Anomaly and Linear Magnetoresistance in Thin Flakes of Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$[J]. Chin. Phys. Lett., 2022, 39(7): 037502
[4] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 037502
[5] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 037502
[6] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 037502
[7] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 037502
[8] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 037502
[9] Sheng Xu, Liqin Zhou, Xiao-Yan Wang, Huan Wang, Jun-Fa Lin, Xiang-Yu Zeng, Peng Cheng, Hongming Weng, and Tian-Long Xia. Quantum Oscillations and Electronic Structure in the Large-Chern-Number Topological Chiral Semimetal PtGa[J]. Chin. Phys. Lett., 2020, 37(10): 037502
[10] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 037502
[11] Qingwei Fu, Yong Li, Lina Chen, Fusheng Ma, Haotian Li, Yongbing Xu, Bo Liu, Ronghua Liu, and Youwei Du. Mode Structures and Damping of Quantized Spin Waves in Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2020, 37(8): 037502
[12] Huan-Cheng Chen, Zhe-Feng Lou, Yu-Xing Zhou, Qin Chen, Bin-Jie Xu, Shui-Jin Chen, Jian-Hua Du, Jin-Hu Yang, Hang-Dong Wang, Ming-Hu Fang. Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn$_2$As$_2$$^{*}$[J]. Chin. Phys. Lett., 2020, 37(4): 037502
[13] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 037502
[14] Qi Wang, Qianheng Du, Cedomir Petrovic, Hechang Lei. Physical Properties of Half-Heusler Antiferromagnet MnPtSn Single Crystal[J]. Chin. Phys. Lett., 2020, 37(2): 037502
[15] Xin-Min Wang, Ling-Xiao Zhao, Jing Li, Mo-Ran Gao, Wen-Liang Zhu, Chao-Yang Ma, Yi-Yan Wang, Shuai Zhang, Zhi-An Ren, Gen-Fu Chen. Negative Longitudinal Magnetoresistance in the $c$-Axis Resistivity of Cd[J]. Chin. Phys. Lett., 2019, 36(5): 037502
Viewed
Full text


Abstract