CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Enhanced Giant Magnetoimpedance Effect in Rapid Heat-Treated Fe-Based Amorphous Ribbons |
ZHANG Yi, DONG Juan, FENG Er-Xi, LUO Cai-Qin, LIU Qing-Fang, WANG Jian-Bo** |
Institute of Applied Magnetics, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000
|
|
Cite this article: |
ZHANG Yi, DONG Juan, FENG Er-Xi et al 2013 Chin. Phys. Lett. 30 037501 |
|
|
Abstract An enhanced giant magnetoimpedance (GMI) effect of Fe-based amorphous ribbons is obtained by rapid heat treatment. The structural investigations on the ribbon reveal the presence of two phases, i.e. a fine grained Fe3Si phase and a residual amorphous phase on rapid heat treatment. The soft magnetic property is improved by rapid heat treatment; the crystal size and grain size of Fe3Si decrease. The maximum magnetoimpedance ratio obtained in the present study is 81% at 10 MHz, and the optimized heat-treated rate is 200°C/min. Separated GMI curves are observed after the simultaneous rapid heat treatment and magnetic field annealing. This suggests that tailoring of the nanocrystalline microstructures induced by optimum rapid heat treatment conditions can result in an excellent GMI effect.
|
|
Received: 31 October 2012
Published: 29 March 2013
|
|
PACS: |
75.50.Kj
|
(Amorphous and quasicrystalline magnetic materials)
|
|
75.50.Tt
|
(Fine-particle systems; nanocrystalline materials)
|
|
75.50.Bb
|
(Fe and its alloys)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
|
|
|
[1] Phan M H and Peng H X 2008 Prog. Mater. Sci. 53 323 [2] Yabukami S, Mawatari H, Horikoshi N, Murayama Y, Ozawa T, Ishiyama K and Arai K I 2005 J. Magn. Magn. Mater. 290 1318 [3] Tejedor M, Hernando B, Sanchez M L, Prida V M and Vazquez M 2000 Sens. Actuators A 81 98 [4] Uchiyama T, Mohri K, Itho H, Nakashima K, Ohuchi J and Sudo Y 2000 IEEE Trans. Magn. 36 3670 [5] Honkura Y 2002 J. Magn. Magn. Mater. 249 375 [6] Kurlyandskaya G V, Sanchez M L, Hernando B, Prida V M, Gorria P and Tejedor M 2003 Appl. Phys. Lett. 82 3053 [7] Peng H X, Qin F X, Phan M H, Tang J, Panina L V, Ipatov M, Zhukova V, Zhukov A and Gonzalez J 2009 J. Non-Cryst. Solids 355 1380 [8] Volchkov S O, Cerdeira M A, Gubernatorov V V and Duhan E I 2007 Chin. Phys. Lett. 24 1357 [9] Morikawa T, Nishibe Y and Yamadera H 1997 IEEE Trans. Magn. 33 4367 [10] Kraus L 1999 J. Magn. Magn. Mater. 195 764 [11] Brunetti L, Tiberto P, Vinai F and Chiriac H 2001 Mater. Sci. Eng. A 304 2001 961 [12] Zhukov A, Ipatov M, Zhukova V, Garcia C, Gonzalez J and Blanco J M 2008 Phys. Status Solidi A 205 1367 [13] Sahoo T, Mishra A C, Srinivas V, Nath T K, Srinivas M and Majumdar B 2011 J. Appl. Phys. 110 083918 [14] Chen C, Luan K Z, Liu Y H, Mei L M, Guo H Q, Shen B G and Zhao J G 1996 Phys. Rev. B 54 6092 [15] Ku W, Ge F and Zhu J 1997 J. Appl. Phys. 82 5050 [16] Phan M H, Peng H X, Wisnom M R, Yu S C, Kim C G and Nghi N H 2006 Sens. Actuators A 129 62 [17] Roozmeh S E, Mohseni S M and Tehranchi M M 2009 J. Non-Cryst. Solids 355 2653 [18] Yu M, Liu Y, Liou S H and Sellmyer D J 1998 J. Appl. Phys. 83 6611 [19] Shao Y, Yan M L and Sellmyer D J 2003 J. Appl. Phys. 93 8152 [20] Lai Y S, Wang J L, Liou S C and Tu C H 2009 Appl. Phys. A 94 357 [21] Li D R, Lu Z C and Zhou S X 2006 IEEE Sens. J. 6 924 [22] Miguel C, Zhukov A P and Gonzalez J 2003 J. Magn. Magn. Mater. 254 463 [23] Sommer R L and Chien C L 1996 Phys. Rev. B 53 5982 [24] Sommer R L and Chien C L 1995 Appl. Phys. Lett. 67 857 [25] Ku W, Ge F and Zhu J 1997 J. Appl. Phys. 82 5050 [26] Wang Z C, Gong F F, Yang X L, Zeng L, Chen G, Yang J X et al 2000 J. Appl. Phys. 87 4819 [27] Ahn S J, Lee B S, Kim C G, Rheem Y W, Yoon S S and Kim C O 2001 Mater. Sci. Eng. A 304 1026 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|