CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
The Influence of Graded AlGaN Buffer Thickness for Crack-Free GaN on Si(111) Substrates by using MOCVD |
XU Pei-Qiang, JIANG Yang**, MA Zi-Guang, DENG Zhen, LU Tai-Ping, DU Chun-Hua, FANG Yu-Tao, ZUO Peng, CHEN Hong |
Key Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
XU Pei-Qiang, JIANG Yang, MA Zi-Guang et al 2013 Chin. Phys. Lett. 30 028101 |
|
|
Abstract GaN films with different thicknesses of Al composition graded AlGaN buffer are grown on substrates of Si(111) by metal-organic chemical vapor deposition (MOCVD). The thicknesses of graded AlGaN buffer are fixed at 200 nm, 300 nm, and 450 nm, respectively. Optical microscopy, atomic force microscopy, x-ray diffraction, and Raman spectroscopy are employed to characterize these samples. We find that the thickness of the graded AlGaN buffer layer plays a key role on the following growth of GaN films. The optimized thickness of the graded AlGaN buffer layer is 300 nm. Under such conditions, the GaN epitaxial film is crack-free, and its dislocation density is the lowest.
|
|
Received: 15 October 2012
Published: 02 March 2013
|
|
PACS: |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
|
|
|
[1] Gaska R, Yang J W, Osinsky A, Chen Q, Khan M A, Orlov A O, Snider G L and Shur M S 1998 Appl. Phys. Lett. 72 707 [2] Yu H, Caliskan D and Ozbay E 2006 J. Appl. Phys. 100 033501 [3] Dadgar A, Hums C, Diez A, Bl?sing J and Krost A 2006 J. Cryst. Growth 297 279 [4] Chen P, Zhang R, Zhao Z M, Xi D J, Shen B, Chen Z Z, Zhou Y G, Xie S Y, Lu W F and Zheng Y D 2001 J. Cryst. Growth 225 150 [5] Amano H, Iwaya M, Kashima T, Katsuragawa M, Akasaki I, Han J, Hearne S, Floro J A, Chason E and Figiel J 1998 Jpn. J. Appl. Phys. 37 L1540 [6] Huang J Y, Ye Z Z, Wang L, Yuan J, Zhao B H and Lu H M 2002 Solid-State Electron. 46 1231 [7] Uena W Y, Li Z Y, Lan S M and Liao S M 2005 J. Cryst. Growth 280 335 [8] Hageman P R, Haffouz1 S, Grzegorczk A, Kirilyuk V and Larsen P K 2002 Mater. Res. Soc. Symp. Proc. 693 105 [9] Kim M H, Do Y G, Kang H C, Noh D Y and Park S J 2001 Appl. Phys. Lett. 79 2713 [10] Fang Z L, Li S P, Li J C, Sun H Z, Wang S J and Kang J Y 2008 Thin Solid Films 516 6344 [11] Cheng K, Leys M, Degroote S, Daele B V, Boeykens S, Derluyn J, Germain M, Tendeloo G V, Engelen J and Borghs G 2006 J. Electron. Mater. 35 592 [12] Kim M H, Do Y G, Kang H C, Noh D Y and Park S J 2001 Appl. Phys. Lett. 79 2713 [13] Hageman P R, Haffouz S, Kirilyuk V, Grzegorczyk A and Larsen P K 2001 Phys. Status Solidi A 188 523 [14] Perlin P, Jauberthie C C, Itie J P et al 1992 Phys. Rev. B 45 83 [15] Harima H 2002 J. Phys: Condens. Matter 14 R967 [16] Craven M D, Lim S H, Wu F, Speck J S and DenBaars S P 2002 Appl. Phys. Lett. 81 469 [17] Rohozińska E Z, Regulska M, Harutyunyan V S, Pakula K and Borowski J 2002 Mater. Sci. Engin. B 91 441 [18] Harutyunyana V S, Rohozińska E Z and Regulska M 2004 J. Alloys Comp. 362 287 [19] Dunn C G and Koch E F 1957 Acta Metall. 5 548 [20] Taniyasu Y, Kasu M and Makimoto T 2007 J. Cryst. Growth 298 310 [21] Metzger T, H?pler R, Born E, Ambacher O, Stutzmann M, St?mmer R, Schuster M, G?bel H, Christiansen S, Albrecht M and Strunk H P 1998 Philos. Mag. A 77 1013 [22] Chierchia R, B?ttcher T, Heinke H, Einfeldt S, Figge S and Hommel D 2003 J. Appl. Phys. 93 8918 [23] Zheng X H, Chen H, Yan Z B, Han Y J, Yu H B, Li D S, Huang Q and Zhou J M 2003 J. Cryst. Growth 255 63 [24] Arslan E, Ozturk M K, Duygulu ? Kaya A A, Ozcelik S and Ozbay E 2009 Appl. Phys. A 94 73 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|