Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 028102    DOI: 10.1088/0256-307X/30/2/028102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Graphene Domains Synthesized on Electroplated Copper by Chemical Vapor Deposition
WANG Wen-Rong1,2, LIANG Chen1,2, LI Tie1**, YANG Heng1, LU Na1, WANG Yue-Lin1**
1State Key Laboratories of Transducer Technology, Science and Technology on Microsystem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
WANG Wen-Rong, LIANG Chen, LI Tie et al  2013 Chin. Phys. Lett. 30 028102
Download: PDF(2277KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electroplated Cu, which can be compatible with integrated circuit technology and large-scale silicon wafers, is explored as a substrate to synthesize graphene domains by ambient-pressure chemical vapor deposition. Hexagonal single crystal domains of graphene are synthesized on electroplated Cu under dilute methane gas flow. Scanning electron microscopy images of graphene domains grown on electroplated Cu indicate that the domain size is time-dependent, and the domains can cross Cu grain boundaries and are distributed more uniformly on electroplated Cu surface than those grown on Cu foil.
Received: 05 November 2012      Published: 02 March 2013
PACS:  81.05.ue (Graphene)  
  68.65.Pq (Graphene films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/028102       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/028102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Wen-Rong
LIANG Chen
LI Tie
YANG Heng
LU Na
WANG Yue-Lin
[1] Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotechnol. 5 574
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Chae S J, Gunes F, Kim K K, Kim E S, Han G H, Kim S M, Shin H J, Yoon S M, Choi J Y, Park M H, Yang C W, Pribat D and Lee Y H 2009 Adv. Mater. 21 2328
[4] Colombo L, Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K and Ruoff R S 2009 Science 324 1312
[5] Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2012 Chin. Phys. B 21 038102
[6] De Heer W A, Berger C, Ruan M, Sprinkle M, Li X B, Hu Y K, Zhang B Q, Hankinson J and Conrad E 2011 Proc. Natl. Acad. Sci. USA 108 16900
[7] Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270
[8] Yu H L, Zhu J Q, Cao W X and N J C 2013 Acta Phys. Sin. 62 028201 (in Chinese)
[9] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Rohrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B and Seyller T 2009 Nat. Mater. 8 203
[10] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97
[11] Liu W, Li H, Xu C, Khatami Y and Banerjee K 2011 Carbon 49 4122
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[13] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[14] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558
[15] Su C Y, Lu A Y, Wu C Y, Li Y T, Liu K K, Zhang W J, Lin S Y, Juang Z Y, Zhong Y L, Chen F R and Li L J 2011 Nano Lett. 11 3612
[16] Sutter P, Hybertsen M S, Sadowski J T and Sutter E 2009 Nano Lett. 9 2654
[17] Li X S, Cai W W, Colombo L and Ruoff R S 2009 Nano Lett. 9 4268
[18] Wu Y A, Robertson A W, Schaffel F, Speller S C and Warner J H 2011 Chem. Mater. 23 4543
[19] Wu T R, Ding G Q, Shen H L, Wang H M, Sun L, Jiang D, Xie X M and Jiang M H 2012 Adv. Funct. Mater.
[20] Yu Q K, Lian J, Siriponglert S, Li H, Chen Y P and Pei S S 2008 Appl. Phys. Lett. 93 113103
Related articles from Frontiers Journals
[1] Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu, Yu-Xiang Gao, Yu-Yang Zhang, Qing Dai, Xiao Lin, Shi-Xuan Du, Jindong Ren, and Hong-Jun Gao. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(4): 028102
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 028102
[3] Fuxin Wang, Chao Zhang, Yanmei Yang, Yuanyuan Qu, Yong-Qiang Li, Baoyuan Man, and Weifeng Li. Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing[J]. Chin. Phys. Lett., 2020, 37(11): 028102
[4] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 028102
[5] Zhong Wang, Zhiyang Yuan, and Feng Liu. Extended Nernst–Planck Equation Incorporating Partial Dehydration Effect[J]. Chin. Phys. Lett., 2020, 37(9): 028102
[6] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 028102
[7] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 028102
[8] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 028102
[9] ZHANG Yu-Ping, LI Tong-Tong, LV Huan-Huan, HUANG Xiao-Yan, ZHANG Xiao, XU Shi-Lin, ZHANG Hui-Yun. Graphene-Based Tunable Polarization Insensitive Dual-Band Metamaterial Absorber at Mid-Infrared Frequencies[J]. Chin. Phys. Lett., 2015, 32(06): 028102
[10] GAO Chuan-Wei, WANG Ying-Ying, JIANG Jie, NAN Hai-Yan, NI Zhen-Hua. Raman Study of Polydimethylsiloxane Substrate Effect on Hydrogenation of Graphene[J]. Chin. Phys. Lett., 2015, 32(5): 028102
[11] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 028102
[12] LIU Qing-Bin, YU Cui, LI Jia, SONG Xu-Bo, HE Ze-Zhao, LU Wei-Li, GU Guo-Dong, WANG Yuan-Gang, FENG Zhi-Hong. Radio-Frequency Performance of Epitaxial Graphene Field-Effect Transistors on Sapphire Substrates[J]. Chin. Phys. Lett., 2014, 31(07): 028102
[13] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 028102
[14] CHEN Ya-Qin. Determination of the In-Plane Optical Conductivity of Multilayer Graphene Supported on a Transparent Substrate of Finite Thickness from Normal-Incidence Transmission Spectra[J]. Chin. Phys. Lett., 2014, 31(05): 028102
[15] Tatnatchai Suwannasit, Rassmidara Hoonsawat, I-Ming Tang, Bumned Soodchomshom. Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers[J]. Chin. Phys. Lett., 2014, 31(03): 028102
Viewed
Full text


Abstract