CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Graphene Domains Synthesized on Electroplated Copper by Chemical Vapor Deposition |
WANG Wen-Rong1,2, LIANG Chen1,2, LI Tie1**, YANG Heng1, LU Na1, WANG Yue-Lin1** |
1State Key Laboratories of Transducer Technology, Science and Technology on Microsystem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
WANG Wen-Rong, LIANG Chen, LI Tie et al 2013 Chin. Phys. Lett. 30 028102 |
|
|
Abstract Electroplated Cu, which can be compatible with integrated circuit technology and large-scale silicon wafers, is explored as a substrate to synthesize graphene domains by ambient-pressure chemical vapor deposition. Hexagonal single crystal domains of graphene are synthesized on electroplated Cu under dilute methane gas flow. Scanning electron microscopy images of graphene domains grown on electroplated Cu indicate that the domain size is time-dependent, and the domains can cross Cu grain boundaries and are distributed more uniformly on electroplated Cu surface than those grown on Cu foil.
|
|
Received: 05 November 2012
Published: 02 March 2013
|
|
|
|
|
|
[1] Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotechnol. 5 574 [2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [3] Chae S J, Gunes F, Kim K K, Kim E S, Han G H, Kim S M, Shin H J, Yoon S M, Choi J Y, Park M H, Yang C W, Pribat D and Lee Y H 2009 Adv. Mater. 21 2328 [4] Colombo L, Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K and Ruoff R S 2009 Science 324 1312 [5] Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2012 Chin. Phys. B 21 038102 [6] De Heer W A, Berger C, Ruan M, Sprinkle M, Li X B, Hu Y K, Zhang B Q, Hankinson J and Conrad E 2011 Proc. Natl. Acad. Sci. USA 108 16900 [7] Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270 [8] Yu H L, Zhu J Q, Cao W X and N J C 2013 Acta Phys. Sin. 62 028201 (in Chinese) [9] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Rohrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B and Seyller T 2009 Nat. Mater. 8 203 [10] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 [11] Liu W, Li H, Xu C, Khatami Y and Banerjee K 2011 Carbon 49 4122 [12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [13] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151 [14] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558 [15] Su C Y, Lu A Y, Wu C Y, Li Y T, Liu K K, Zhang W J, Lin S Y, Juang Z Y, Zhong Y L, Chen F R and Li L J 2011 Nano Lett. 11 3612 [16] Sutter P, Hybertsen M S, Sadowski J T and Sutter E 2009 Nano Lett. 9 2654 [17] Li X S, Cai W W, Colombo L and Ruoff R S 2009 Nano Lett. 9 4268 [18] Wu Y A, Robertson A W, Schaffel F, Speller S C and Warner J H 2011 Chem. Mater. 23 4543 [19] Wu T R, Ding G Q, Shen H L, Wang H M, Sun L, Jiang D, Xie X M and Jiang M H 2012 Adv. Funct. Mater. [20] Yu Q K, Lian J, Siriponglert S, Li H, Chen Y P and Pei S S 2008 Appl. Phys. Lett. 93 113103 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|