GENERAL |
|
|
|
|
Quantum Correlations in a Family of Bipartite Qubit-Qutrit Separable States |
YE Biao-Liang1, LIU Yi-Min2, LIU Xian-Song1, ZHANG Zhan-Jun1** |
1School of Physics & Material Science, Anhui University, Hefei 230039 2Department of Physics, Shaoguan University, Shaoguan 512005
|
|
Cite this article: |
YE Biao-Liang, LIU Yi-Min, LIU Xian-Song et al 2013 Chin. Phys. Lett. 30 020302 |
|
|
Abstract Quantum correlations in a family of bipartite separable qubit-qutrit quantum-classical correlated states are investigated by using two popular measures, i.e., the original quantum discord (OQD) method by Ollivier and Zurek [Phys. Rev. Lett. 88 (2001) 017901] and the measurement-induced disturbance (MID) method by Luo [Phys. Rev. A 77 (2008) 022301]. It is found that both of them are functions of a parameter partially characterizing the concerned states, however, quantum correlations evaluated via the convenient MID method are somewhat overestimated.
|
|
Received: 05 November 2012
Published: 02 March 2013
|
|
PACS: |
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.67.-a
|
(Quantum information)
|
|
|
|
|
[1] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [2] Cavalcanti D, Aolita L, Boixo S et al 2011 Phys. Rev. A 83 032324 [3] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502 [4] Daki? B, Lipp Y O, Ma X et al 2012 Nat. Phys. 8 666 [5] Luo S 2008 Phys. Rev. A 77 042303 [6] Luo S 2008 Phys. Rev. A 77 022301 [7] Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401 [8] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105 [9] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103 [10] Hu X Y, Gu Y, Gong Q and Guo G C 2011 Phys. Rev. A 84 022113 [11] Lu X M, Ma J, Xi Z and Wang X 2011 Phys. Rev. A 83 012327 [12] Lu X M, Xi Z, Sun Z and Wang X 2010 Quantum Inf. Comput. 10 0994 [13] Li B, Wang Z X and Fei S M 2011 Phys. Rev. A 83 022321 [14] Li B, Fei S M Wang Z X and Fan H 2012 Phys. Rev. A 85 022328 [15] Shi M, Sun C, Jiang F, Yan X and Du J 2012 Phys. Rev. A 85 064104 [16] Zhou T, Cui J and Long G L 2011 Phys. Rev. A 84 062105 [17] Wei H R, Ren B C and Deng F G 2012 Quantum Inf. Process. (in press) [18] Zhang Z J, Ye B L, Fei S M 2012 arXiv:1206.0221[quant-ph] [19] Zhang Z J 2012 arXiv:1202.3640[quant-ph] [20] Girolami D, Paternostro M and Adesso G 2011 J. Phys. A: Math. Theor. 44 352002 [21] Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109 [22] Giorgi G L, Bellomo B, Galve F and Zambrini R 2011 Phys. Rev. Lett. 107 190501 [23] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501 [24] Daki? B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502 [25] Bylicka B and Chru?ciński D 2010 Phys. Rev. A 81 062102 [26] Okrasa M and Walczak Z 2011 Europhys. Lett. 96 60003 [27] Giorda Paolo and Paris M G A 2010 Phys. Rev. Lett. 105 020503 [28] Zhang G F, Hou Y C and Ji A L 2011 Solid State Commun. 151 790 [29] Mista Jr L, Tatham R, Girolami D, Korolkova N and Adesso G 2011 Phys. Rev. A 83 042325 [30] Chen L, Shao X Q and Zhang S 2011 Chin. Phys. B 20 100311 [31] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501 [32] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7 [33] Giampaolo S M and Illuminati F 2007 Phys. Rev. A 76 042301 [34] Pérez A 2010 Phys. Rev. A 81 052326 [35] Zhou J D, Hou G and Zhang Y D 2001 Phys. Rev. A 64 012301 [36] Zeng B, Zhang P 2002 Phys. Rev. A 65 022316 [37] Yu C S, Song H S and Wang Y H 2006 Phys. Rev. A 73 022340 [38] Xia Y and Song H S 2007 Phys. Lett. A 364 117 [39] Zhang W, Liu Y M and Zhang Z J 2010 Opt. Commun. 283 628 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|