Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 020303    DOI: 10.1088/0256-307X/30/2/020303
GENERAL |
A New Proof for the Harmonic-Potential Theorem
CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin**
Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin 2013 Chin. Phys. Lett. 30 020303
Download: PDF(441KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the time evolution of the wave function for a many-particle system in an external harmonic potential and a spatially homogeneous time-dependent driving field. The time-dependent wave function is found to be a phase factor times the shifted initial state wave function. This then provides a new proof of the harmonic-potential theorem.
Received: 02 November 2012      Published: 02 March 2013
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/020303       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/020303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jin-Wang
YANG Tao
PAN Xiao-Yin
[1] Dobson J F 1994 Phys. Rev. Lett. 73 2244
[2] Runge E and Gross E K U 1985 Phys. Rev. Lett. 55 2850
[3] Sahni V 2004 Quantal Density Functional Theory (Berlin: Springer)
[4] Qian Z X and Sahni V 2001 Phys. Rev. A 63 042508
Pan X Y and Sahni V 2003 Int. J. Quantum Chem. 95 387
[5] Shi Y Ret al 2012 Chin. Phys. Lett. 29 110302
Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
Bialynicki-Birula I and Sowinski T 2005 Phys. Rev. A 71 043610 and references therein
[6] Zhang S L et al 2011 Chin. Phys. Lett. 28 120301
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[7] Yip S K 1991 Phys. Rev. B 43 1707
[8] Taut M 1993 Phys. Rev. A 48 3561
Flilippi C, Umrigar C J and Taut M 1994 J. Chem. Phys. 100 1290
[9] Elliott J P and Skyrme T H R 1955 Proc. R. Soc. London A 232 561
[10] Yip S K 1991 Phys. Rev. B 43 1707
Fujito M, Natori A and Yasunaga H 1996 Phys. Rev. B 53 9952 and references there in
[11] Taut M 2000 Phys. Rev. B 62 8126 and references there in
Ando T, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437
Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283
[12] Yu A Firsov and Gurevitch V L 1961 Zh. Eksp. Teor. Fiz 41 512 [1962 Sov. Phys. JETP 14 367]
[13] Maksym P A and Chakraborty T 1990 Phys. Rev. Lett. 65 108
[14] Messiah A 1999 Quantum Mechanics (New York: Dover Publications)
Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 020303
[2] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 020303
[3] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 020303
[4] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 020303
[5] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 020303
[6] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 020303
[7] K. T. Chan, H. Zainuddin, K. A. M. Atan, A. A. Siddig. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface[J]. Chin. Phys. Lett., 2016, 33(09): 020303
[8] Jie Gao, Min-Cang Zhang. Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential[J]. Chin. Phys. Lett., 2016, 33(01): 020303
[9] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 020303
[10] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 020303
[11] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 020303
[12] ZHANG Min-Cang. Analytical Arbitrary-Wave Solutions of the Deformed Hyperbolic Eckart Potential by the Nikiforov–Uvarov Method[J]. Chin. Phys. Lett., 2013, 30(11): 020303
[13] QI Wei, LIANG Zhao-Xin, ZHANG Zhi-Dong. Collective Excitations of a Dipolar Bose–Einstein Condensate in an Anharmonic Trap[J]. Chin. Phys. Lett., 2013, 30(6): 020303
[14] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 020303
[15] CHAN Kar-Tim, Hishamuddin Zainuddin, Saeid Molladavoudi. Computation of Quantum Bound States on a Singly Punctured Two-Torus[J]. Chin. Phys. Lett., 2013, 30(1): 020303
Viewed
Full text


Abstract